|
The Coherence of a Dipolar Condensate in a Harmonic Potential Superimposed to a Deep Lattice
WANG Long, YU Zi-Fa, XUE Ju-Kui
Chin. Phys. Lett. 2015, 32 (06):
060304
.
DOI: 10.1088/0256-307X/32/6/060304
Within the mean-field model, the coherent matter waves of a dipolar condensate in a harmonic potential superimposed to a deep lattice are investigated by the variational principle. It is shown that, in a harmonic potential superimposed to a deep lattice, it is possible to control the decoherence of Bloch oscillations due to the fact that the on-site and the inter-site dipolar interactions can not only damp out Bloch oscillations but also maintain long-lived Bloch oscillations under the certain condition. In particular, long-lived Bloch oscillations of dipolar condensate can be realized when the dipolar interaction, the contact interaction, the frequency of the harmonic potential and initial width of the wave packet satisfy an analytical condition. Thus the decoherence of Bloch oscillation can be controlled by adjusting the dipolar interaction, the contact interaction, the frequency of harmonic potential and the initial width of the wave packet.
|
|
The Effect of Quantum Coins on the Spreading of Binary Disordered Quantum Walk
ZHAO Jing, HU Ya-Yun, TONG Pei-Qing
Chin. Phys. Lett. 2015, 32 (06):
060501
.
DOI: 10.1088/0256-307X/32/6/060501
The dynamical and static disordered quantum walks were extensively studied recently. It is found that, for the dynamical disorder case, the transport behavior of particles is diffusive, and for the static disorder case the transport behavior is localized. In this work, we study the effect of quantum coins on the transport behaviors of the binary disordered quantum walks. We find that once the coins satisfy certain conditions, the sub-ballistic spreading could be found in binary dynamical disorder quantum walks, and the sub-ballistic, diffusive and sub-diffusive spreadings could be found in binary static disorder quantum walks. We obtain the necessary conditions for those abnormal diffusive behaviors.
|
|
Azimuthal Asymmetry of Pion-Meson Emission around the Projectile and Target Sides in Au+Au Collision at 1A GeV
WANG Ting-Ting, LU Ming, MA Yu-Gang, FANG De-Qing, WANG Shan-Shan, ZHANG Guo-Qiang
Chin. Phys. Lett. 2015, 32 (06):
062501
.
DOI: 10.1088/0256-307X/32/6/062501
The ratio of the number of emitted pions from the target side to that from the projectile side at target rapidity within the reaction plane is investigated for the study of the pion dynamics with an isospin-dependent quantum molecular dynamic model. The results show that high-energy pions are emitted preferentially towards the target side and, therefore, they are freezed out at the early stage of the collision. By contrast, low-energy pions are emitted predominantly in the opposite direction, which means that they are emitted in a later stage. This argument is based on the shadowing effect caused by the interaction of pions with the spectator matter in peripheral collisions at target or projectile rapidities. This phenomenon disappears in the central collision or at midrapidity due to the weaker shadowing effect. The calculated ratios are also compared with the experimental data.
|
|
Charge Resonance Enhanced Multiple Ionization of H2O Molecules in Intense Laser Fields
LIU Hong, LI Min, XIE Xi-Guo, WU Cong, DENG Yong-Kai, WU Cheng-Yin, GONG Qi-Huang, LIU Yun-Quan
Chin. Phys. Lett. 2015, 32 (06):
063301
.
DOI: 10.1088/0256-307X/32/6/063301
We perform a kinetically complete measurement on the fragmentation of Coulomb explosion of H2O molecules in intense few-cycle linearly and circularly polarized laser fields. Both the fragmentations of H2O3+ and H2O4+ reveal the concerted pathway of dissociation. The length of the O–H bond prior to the Coulomb explosion of both molecular ions is sensitive to the laser pulse duration and laser intensity. However, the bending angle of H–O–H is less sensitive to the pulse duration and laser intensity. We introduce the mechanism of charge resonance enhanced double ionization to elucidate the triple (or quadruple) dissociative ionization dynamics of H2O, in which two electrons are non-adiabatically localized at the protons of the precursor ion H2O+ (or H2O2+) and are released simultaneously due to the over barrier ionization in the combined laser field and molecular ionic potential. Such charge resonance enhanced multiple ionization is not suppressed in few-cycle laser fields and elliptically polarized laser fields.
|
|
A kW Continuous-Wave Ytterbium-Doped All-Fiber Laser Oscillator with Domestic Fiber Components and Gain Fiber
LIAO Lei, LIU Peng, XING Ying-Bin, WANG Yi-Bo, PENG Jing-Gang, DAI Neng-Li, LI Jin-Yan, HE Bing, ZHOU Jun
Chin. Phys. Lett. 2015, 32 (06):
064201
.
DOI: 10.1088/0256-307X/32/6/064201
We demonstrate a kW continuous-wave ytterbium-doped all-fiber laser oscillator with all domestic fiber components: a 7×1 fused fiber bundle combiner, a fiber Bragg grating and a double-clad gain fiber. The oscillator operates at 1079.48 nm with 80.94% slope efficiency and shows no limit of temperature and nonlinear effects. These indicate that the passive fiber components and the gain fiber are all qualified for the high power environment. No evidence of the signal power roll-over shows that this oscillator possesses the capacity to higher output with available pump power.
|
|
Propagation of Partially Coherent Elegant Hermite-Cosh-Gaussian Beam in Non-Kolmogorov Turbulence
ZHANG Wen-Fu, LIAN Jie, WANG Ying-Shun, HU Xue-Yuan, SUN Zhao-Zong, ZHAO Ming-Lin, WANG Ying, LI Meng-Meng
Chin. Phys. Lett. 2015, 32 (06):
064204
.
DOI: 10.1088/0256-307X/32/6/064204
Based on the extended Huygens–Fresnel integral, analytical propagation expressions for the rms beam width and angular of partially coherent elegant Hermite cosh Gaussian beam (EHChGB) in non-Kolmogorov turbulence are derived. The effects of exponent value, inner and outer scales of non-Kolmogorov turbulence on partially coherent EHChGB are investigated quantitatively.
|
|
Simultaneously Suppressing Low-Frequency and Relaxation Oscillation Intensity Noise in a DBR Single-Frequency Phosphate Fiber Laser
XIAO Yu, LI Can, XU Shan-Hui, FENG Zhou-Ming, YANG Chang-Sheng, ZHAO Qi-Lai, YANG Zhong-Min
Chin. Phys. Lett. 2015, 32 (06):
064205
.
DOI: 10.1088/0256-307X/32/6/064205
Effective multiple optoelectronic feedback circuits for simultaneously suppressing low-frequency and relaxation oscillation intensity noise in a single-frequency phosphate fiber laser are demonstrated. The forward transfer function, which relates the laser output intensity to the pump modulations, is measured and analyzed. A custom two-path feedback system operating at different frequency bands is designed to adjust the pump current directly. The relative intensity noise is decreased by 20 dB from 0.2 to 5 kHz and over 10 dB from 5 to 10 kHz. The relaxation oscillation peak is suppressed by 22 dB. In addition, a long term (24 h) laser instability of less than 0.05% is achieved.
|
|
Effect of In Diffusion on the Property of Blue Light-Emitting Diodes
ZENG Yong-Ping, LIU Wen-Jie, WENG Guo-En, ZHAO Wan-Ru, ZUO Hai-Jie, YU Jian, ZHANG Jiang-Yong, YING Lei-Ying, ZHANG Bao-Ping
Chin. Phys. Lett. 2015, 32 (06):
064207
.
DOI: 10.1088/0256-307X/32/6/064207
In diffusion to blue light-emitting diode (LED) wafers is performed by the inductive coupled plasma (ICP) treatment of a covering layer of indium tin oxide (ITO) on the wafer surface. The electrical property of the p-type contact is improved and the redshift of photoluminescence (PL) from the InGaN quantum well of the wafer is found. Measurements by x-ray photoelectron spectroscopy (XPS) demonstrate that In atoms have diffused into p-GaN. Reflectance spectra of the sample surface reveal the variation caused by the ICP treatment. A model of compensation of the in-plane strain of the InGaN layer is used to explain the redshift of the PL data. Finally, LEDs are fabricated by using as-grown and ICP-treated wafers and their properties are compared. Under an injection current of 20 mA, LEDs with ICP-induced In doping show a decrease of 0.3 V in the forward voltage and an increase of 23% in the light output, respectively.
|
|
Electron Cyclotron Emission Imaging Observations of m/n=1/1 and Higher Harmonic Modes during Sawtooth Oscillation in ICRF Heating Plasma on EAST
AZAM Hussain, GAO Bing-Xi, LIU Wan-Dong, XIE Jin-Lin, the EAST Team
Chin. Phys. Lett. 2015, 32 (06):
065201
.
DOI: 10.1088/0256-307X/32/6/065201
The m/n=1/1 and its higher harmonic modes are observed in sawtooth oscillations by using the novel high-resolution 2D ECE imaging system on the experimental advanced superconducting Tokamak (EAST). Higher harmonic modes are appearing for a short time during the crash phase of sawtooth oscillation in lower βp plasma, which is not the preferable position in the poloidal cross section. These modes generate sharp pressure points on the inversion radius during the crash phase of sawtooth oscillation. Furthermore, reconnection events proceed in two distinctive phases. In the first phase, a small amount of heat is expelled through the weak reconnection while in the second phase the remaining large quantity of heat and particles emerged rapidly from the hot core to the peripheral region of the inversion radius. In addition, these harmonic modes are only found before and after the ICRF pulse, while in the ICRF pulse only the (1,1) mode exists in the sawtooth oscillation.
|
|
Simulation of Plasma Disruptions for HL-2M with the DINA Code
XUE Lei, DUAN Xu-Ru, ZHENG Guo-Yao, LIU Yue-Qiang, YAN Shi-Lei, DOKUKA V. V., KHAYRUTDINOV R. R., LUKASH V. E.
Chin. Phys. Lett. 2015, 32 (06):
065203
.
DOI: 10.1088/0256-307X/32/6/065203
Plasma disruption is often an unavoidable aspect of tokamak operations. It may cause severe damage to in-vessel components such as the vacuum vessel conductors, the first wall and the divertor target plates. Two types of disruption, the hot-plasma vertical displacement event and the major disruption with a cold-plasma vertical displacement event, are simulated by the DINA code for HL-2M. The time evolutions of the plasma current, the halo current, the magnetic axis, the minor radius, the elongation as well as the electromagnetic force and eddy currents on the vacuum vessel during the thermal quench and the current quench are investigated. By comparing the electromagnetic forces before and after the disruption, we find that the disruption causes great damage to the vacuum vessel conductors. In addition, the hot-plasma vertical displacement event is more dangerous than the major disruption with the cold-plasma vertical displacement event.
|
|
Enhanced Magnetic and Dielectric Properties in Low-Content Tb-Doped BiFeO3 Nanoparticles
GUO Min-Chen, LIU Wei-Fang, WU Ping, ZHANG Hong, XU Xun-Ling, WANG Shou-Yu, RAO Guang-Hui
Chin. Phys. Lett. 2015, 32 (06):
066101
.
DOI: 10.1088/0256-307X/32/6/066101
Bi1?xTbxFeO3 (x=0, 0.01, 0.03 and 0.05) nanoparticles are synthesized by the sol-gel method. A single phase perovskite rhombohedral structure of all the samples is established from the Rietveld refined XRD patterns. The substitution of Tb3+ ions to Bi3+ decreases the particle size and enhances the ferromagnetic properties of this system. Interestingly a large maximum magnetization value of 1.73 emu/g at 50 kOe can be observed in 1% Tb-doped sample at 300 K. The decrease in band gap may result from the reduced particle size, while the leakage current density also decreases, which is mainly explained by the variation of oxygen vacancies.
|
|
Bismuth Effects on Electronic Levels in GaSb(Bi)/AlGaSb Quantum Wells Probed by Infrared Photoreflectance
CHEN Xi-Ren, SONG Yu-Xin, ZHU Liang-Qing, QI Zhen, ZHU Liang, ZHA Fang-Xing, GUO Shao-Ling, WANG Shu-Min, SHAO Jun
Chin. Phys. Lett. 2015, 32 (06):
067301
.
DOI: 10.1088/0256-307X/32/6/067301
GaSb(Bi)/Al0.2Ga0.8Sb single quantum wells are characterized by a Fourier transform infrared spectrometer-based photoreflectance method at 77 K. Spatially direct and indirect transitions between the electronic levels at and above the effective band gap are well resolved. The shifts of the electronic levels with Bi incorporation are identified quantitatively. The results show that the upshift of the valence band edge is clarified to be dominant, while the Bi-induced downshift of the conduction band edge does exist and contributes to the band gap reduction in the GaSbBi quantum-well layer by (29±6)%.
|
|
Identification of Topological Surface State in PdTe2 Superconductor by Angle-Resolved Photoemission Spectroscopy
LIU Yan, ZHAO Jian-Zhou, YU Li, LIN Cheng-Tian, LIANG Ai-Ji, HU Cheng, DING Ying, XU Yu, HE Shao-Long, ZHAO Lin, LIU Guo-Dong, DONG Xiao-Li, ZHANG Jun, CHEN Chuang-Tian, XU Zu-Yan, WENG Hong-Ming, DAI Xi, FANG Zhong, ZHOU Xing-Jiang
Chin. Phys. Lett. 2015, 32 (06):
067303
.
DOI: 10.1088/0256-307X/32/6/067303
High-resolution angle-resolved photoemission measurements are carried out on transition metal dichalcogenide PdTe2 that is a superconductor with a Tc at 1.7 K. Combined with theoretical calculations, we discover for the first time the existence of topologically nontrivial surface state with Dirac cone in PbTe2 superconductor. It is located at the Brillouin zone center and possesses helical spin texture. Distinct from the usual three-dimensional topological insulators where the Dirac cone of the surface state lies at the Fermi level, the Dirac point of the surface state in PdTe2 lies deeply below the Fermi level at ∼1.75 eV binding energy and is well separated from the bulk states. The identification of topological surface state in PdTe2 superconductor deeply below the Fermi level provides a unique system to explore new phenomena and properties and opens a door for finding new topological materials in transition metal chalcogenides.
|
|
Electronic Structure, Irreversibility Line and Magnetoresistance of Cu0.3Bi2Se3 Superconductor
YI He-Mian, CHEN Chao-Yu, SUN Xuan, XIE Zhuo-Jin, FENG Ya, LIANG Ai-Ji, PENG Ying-Ying, HE Shao-Long, ZHAO Lin, LIU Guo-Dong, DONG Xiao-Li, ZHANG Jun, CHEN Chuang-Tian, XU Zu-Yan, GU Gen-Da, ZHOU Xing-Jiang
Chin. Phys. Lett. 2015, 32 (06):
067401
.
DOI: 10.1088/0256-307X/32/6/067401
CuxBi2Se3 is a superconductor that is a potential candidate for topological superconductors. We report our laser-based angle-resolved photoemission measurement on the electronic structure of the CuxBi2Se3 superconductor, and a detailed magneto-resistance measurement in both normal and superconducting states. We find that the topological surface state of the pristine Bi2Se3 topological insulator remains robust after the Cu-intercalation, while the Dirac cone location moves downward due to electron doping. Detailed measurements on the magnetic field-dependence of the resistance in the superconducting state establishes an irreversibility line and gives a value of the upper critical field at zero temperature of ∼4000 Oe for the Cu0.3Bi2Se3 superconductor with a middle point Tc of 1.9 K. The relation between the upper critical field Hc2 and temperature T is different from the usual scaling relation found in cuprates and in other kinds of superconductors. Small positive magneto-resistance is observed in Cu0.3Bi2Se3 superconductors up to room temperature. These observations provide useful information for further study of this possible candidate for topological superconductors.
|
|
Possible p-Wave Superconductivity in Epitaxial Bi/Ni Bilayers
GONG Xin-Xin, ZHOU He-Xin, XU Peng-Chao, YUE Di, ZHU Kai, JIN Xiao-Feng, TIAN He, ZHAO Ge-Jian, CHEN Ting-Yong
Chin. Phys. Lett. 2015, 32 (06):
067402
.
DOI: 10.1088/0256-307X/32/6/067402
Superconductivity (SC) is one of the most intriguing physical phenomena in nature. Nucleation of SC has long been considered highly unfavorable if not impossible near ferromagnetism, in low dimensionality and, above all, out of non-superconductor. Here we report observation of SC with TC near 4 K in Ni/Bi bilayers that defies all known paradigms of superconductivity, where neither ferromagnetic Ni film nor rhombohedra Bi film is superconducting in isolation. This highly unusual SC is independent of the growth order (Ni/Bi or Bi/Ni), but highly sensitive to the constituent layer thicknesses. Most importantly, the SC, distinctively non-s pairing, is triggered from, but does not occur at, the Bi/Ni interface. Using point contact Andreev reflection, we show evidences that the unique SC, naturally compatible with magnetism, is triplet p-wave pairing.
|
|
Molecular Beam Epitaxy Growth and Scanning Tunneling Microscopy Study of Pyrite CuSe2 Films on SrTiO3
PENG Jun-Ping, ZHANG Hui-Min, SONG Can-Li, JIANG Ye-Ping, WANG Li-Li, HE Ke, XUE Qi-Kun, MA Xu-Cun
Chin. Phys. Lett. 2015, 32 (06):
068104
.
DOI: 10.1088/0256-307X/32/6/068104
We perform molecular beam epitaxy growth and scanning tunneling microscopy study of copper diselenide (CuSe2) films on SrTiO3(001). Using a Se-rich condition, the single-phase pyrite CuSe2 grows in the Stranski–Krastanov (layer-plus-island) mode with a preferential orientation of (111). Our careful inspection of both the as-grown and post-annealed CuSe2 films at various temperatures invariably shows a Cu-terminated surface, which, depending on the annealing temperature, reconstructs into two distinct structures 2×√3 and √3×√3-R30°. The Cu termination is supported by the depressed density of states near the Fermi level, measured by in-situ low temperature scanning tunneling spectroscopy. Our study helps understand the preparation and surface chemistry of transition metal pyrite dichalcogenides thin films.
|
|
Set Programming Method and Performance Improvement of Phase Change Random Access Memory Arrays
FAN Xi, CHEN Hou-Peng, WANG Qian, WANG Yue-Qing, LV Shi-Long, LIU Yan, SONG Zhi-Tang, FENG Gao-Ming, LIU Bo
Chin. Phys. Lett. 2015, 32 (06):
068301
.
DOI: 10.1088/0256-307X/32/6/068301
A novel slow-down set waveform is proposed to improve the set performance and a 1 kb phase change random access memory chip fabricated with a 130 nm CMOS technology is implemented to investigate the set performance by different set programming strategies based on this new set pulse. The amplitude difference (I1?I2) of the set pulse is proved to be a crucial parameter for set programming. We observe and analyze the cell characteristics with different I1?I2 by means of thermal simulations and high-resolution transmission electron microscopy, which reveal that an incomplete set programming will occur when the proposed slow-down pulse is set with an improperly high I1?I2. This will lead to an amorphous residue in the active region. We also discuss the programming method to avoid the set performance degradations.
|
|
Ultralow Specific on-Resistance Trench MOSFET with a U-Shaped Extended Gate
WANG Zhuo, LI Peng-Cheng, ZHANG Bo, FAN Yuan-Hang, XU Qing, LUO Xiao-Rong
Chin. Phys. Lett. 2015, 32 (06):
068501
.
DOI: 10.1088/0256-307X/32/6/068501
An ultralow specific on-resistance (Ron,sp) trench metal-oxide-semiconductor field effect transistor (MOSFET) with an improved off-state breakdown voltage (BV) is proposed. It features a U-shaped gate around the drift region and an oxide trench inserted in the drift region (UG MOSFET). In the on-state, the U-shaped gate induces a high density electron accumulation layer along its sidewall, which provides a low-resistance current path from the source to the drain, realizing an ultralow Ron,sp. The value of Ron,sp is almost independent of the drift doping concentration, and thus the UG MOSFET breaks through the contradiction relationship between Ron,sp and the off-state BV. Moreover, the oxide trench folds the drift region, enabling the UG MOSFET to support a high BV with a shortened cell pitch. The UG MOSFET achieves an Ron,sp of 2 mΩ?cm2 and an improved BV of 216 V, superior to the best existing state-of-the-art transistors at the same BV level.
|
|
The Cu Based AlGaN/GaN Schottky Barrier Diode
LI Di, JIA Li-Fang, FAN Zhong-Chao, CHENG Zhe, WANG Xiao-Dong, YANG Fu-Hua, HE Zhi
Chin. Phys. Lett. 2015, 32 (06):
068502
.
DOI: 10.1088/0256-307X/32/6/068502
The electrical characteristics of Cu and Ni/Al AlGaN/GaN Schottky barrier diodes on Si substrates are compared. The onset voltage of Cu Schottky diodes is about 0.4 V less than the Ni/Al contact. For the Cu/Ni Schottky contact, the leakage current is 4.7×10?7 A/mm at ?10 V. After annealing, the leakage current is decreased to 3.7×10?7 A/mm for 400°C or 4.6×10?8 A/mm for 500°C, respectively. The electrical property is affected by the thickness ratio of Cu to Ni. The Cu/Ni for 80/20 nm shows a low onset voltage, while the Cu/Ni for 20/80 nm shows a low leakage current. Both breakdown voltages are above 720 V.
|
|
Structural Modeling and Characteristics Analysis of Flow Interaction Networks in the Internet
WU Xiao-Yu, GU Ren-Tao, PAN Zhuo-Ya, JIN Wei-Qi, JI Yue-Feng
Chin. Phys. Lett. 2015, 32 (06):
068901
.
DOI: 10.1088/0256-307X/32/6/068901
Applying network duality and elastic mechanics, we investigate the interactions among Internet flows by constructing a weighted undirected network, where the vertices and the edges represent the flows and the mutual dependence between flows, respectively. Based on the obtained flow interaction network, we find the existence of 'super flow' in the Internet, indicating that some flows have a great impact on a huge number of other flows; moreover, one flow can spread its influence to another through a limited quantity of flows (less than 5 in the experimental simulations), which shows strong small-world characteristics like the social network. To reflect the flow interactions in the physical network congestion evaluation, the 'congestion coefficient' is proposed as a new metric which shows a finer observation on congestion than the conventional one.
|
|
Erratum: Laser-Induced Graphite Plasma Kinetic Spectroscopy under Different Ambient Pressures [Chin. Phys. Lett. Vol. 32, No. 4, 043201(2015)]
K. Chaudhary, S. Rosalan, M. S. Aziz, M. Bahadoran, J Ali, P. P. Yupapin, N. Bidin, Saktioto
Chin. Phys. Lett. 2015, 32 (06):
069901
.
DOI: 10.1088/0256-307X/32/6/069901
|
51 articles
|