Chin. Phys. Lett.  2015, Vol. 32 Issue (06): 060302    DOI: 10.1088/0256-307X/32/6/060302
GENERAL |
Robustness of Genuine Tripartite Entanglement under Collective Dephasing
MAZHAR Ali**
Department of Electrical Engineering, Faculty of Engineering, Islamic University in Madinah, Madinah 107, Kingdom of Saudi Arabia
Cite this article:   
MAZHAR Ali 2015 Chin. Phys. Lett. 32 060302
Download: PDF(492KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We study the robustness of genuine multipartite entanglement for a system of three qubits under collective dephasing. Using a computable entanglement monotone for multipartite systems, we find that almost every state is quite robust under this type of decoherence. We analyze random states and weighted graph states at infinity and find all of them to be genuinely entangled.

Received: 18 March 2015      Published: 30 June 2015
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/6/060302       OR      https://cpl.iphy.ac.cn/Y2015/V32/I06/060302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
MAZHAR Ali

[1] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[2] Gühne O and Tóth G 2009 Phys. Rep. 474 1
[3] Aolita L, de Melo F and Davidovich L 2015 Rep. Prog. Phys. 78 042001
[4] Yu T and Eberly J H 2002 Phys. Rev. B 66 193306
     Yu T and Eberly J H 2003 Phys. Rev. B 68 165322
     Yu T and Eberly J H 2004 Phys. Rev. Lett. 93 140404
     Eberly J H and Yu T 2007 Science 316 555
[5] D ür W and Briegel H J 2004 Phys. Rev. Lett. 92 180403
     Hein M, Dür W and Briegel H J 2005 Phys. Rev. A 71 032350
[6] Aolita L, Chaves R, Cavalcanti D, Acín A and Davidovich L 2008 Phys. Rev. Lett. 100 080501
[7] Simon C and Kempe J 2002 Phys. Rev. A 65 052327
     Borras A et al 2009 Phys. Rev. A 79 022108
     Cavalcanti D et al 2009 Phys. Rev. Lett. 103 030502
[8] Bandyopadhyay S and Lidar D A 2005 Phys. Rev. A 72 042339
     Chaves R and Davidovich L 2010 Phys. Rev. A 82 052308
     Aolita L et al 2010 Phys. Rev. A 82 032317
[9] Carvalho A R R, Mintert F and Buchleitner A 2004 Phys. Rev. Lett. 93 230501
[10] Lastra F, Romero G, Lopez C E, França Santos M and Retamal J C 2007 Phys. Rev. A 75 062324
[11] Gühne O, Bodoky F and Blaauboer M 2008 Phys. Rev. A 78 060301(R)
[12] López C E, Romero G, Lastra F, Solano E and Retamal J C 2008 Phys. Rev. Lett. 101 080503
[13] Rau A R P, Ali M and Alber G 2008 Europhys. Lett. 82 40002
       Ali M, Alber G and Rau A R P 2009 J. Phys. B: At. Mol. Opt. Phys. 42 025501
       Ali M 2010 J. Phys. B: At. Mol. Opt. Phys. 43 045504
       Ali M 2010 Phys. Rev. A 81 042303
       Ali M 2014 Chin. Phys. B 23 090306
       Ali M and Jiang H 2014 Chin. Phys. Lett. 31 110301
[14] Hamadou-Ibrahim A, Plastino A R and Zander C 2010 J. Phys. A: Math. Gen. 43 055305
       He Z, Zou J, Shao B and Kong S Y 2010 J. Phys. B: At. Mol. Opt. Phys. 43 115503
[15] Weinstein Y S et al 2012 Phys. Rev. A 85 032324
       Filippov S N, Rybár T and Ziman M 2012 Phys. Rev. A 85 012303
       Filippov S N, Melnikov A A and Ziman M 2013 Phys. Rev. A 88 062328
[16] Yang M J and Wu S T 2014 Phys. Rev. A 89 022301
       Wu S T 2014 Phys. Rev. A 89 034301
[17] Ali M and Gühne O 2014 J. Phys. B: At. Mol. Opt. Phys. 47 055503
       Ali M 2014 Phys. Lett. A 378 2048
       Ali M and Rau A R P 2014 Phys. Rev. A 90 042330
       Ali M 2014 Open Syst. Inf. Dyn. 21 1450008
[18] Jungnitsch B, Moroder T and Gühne O 2011 Phys. Rev. Lett. 106 190502
       Novo L, Moroder T and Gühne O 2013 Phys. Rev. A 88 012305
[19] Hofmann M, Moroder T and Gühne O 2014 J. Phys. A: Math. Theor. 47 155301
[20] Doll R, Wubs M, Kohler S and Hänggi P 2008 Int. J. Quantum Inf. 6 681
[21] Peres A 1996 Phys. Rev. Lett. 77 1413
[22] Vandenberghe L and Boyd S 1996 SIAM Rev. 38 49
[23] Löfberg J 2004 YALMIP: A Toolbox for Modeling and Optimization in MATLAB. Proceedings of the CACSD Conference (Taipei 4 September 2004)
[24] http://mathworks.com/matlabcentral/fileexchange/30968
[25] Vidal G and Werner R F 2002 Phys. Rev. A 65 032314
[26] Jungnitsch B, Moroder T and Gühne O 2011 Phys. Rev. A 84 032310
[27] Vidal G and Tarrach R 1999 Phys. Rev. A 59 141
[28] Borras A, Majtey A P, Plastino A R, Casas M and Plastino A 2009 Phys. Rev. A 79 022108
[29] Novotný J, Alber G and Jex I 2011 Phys. Rev. Lett. 107 090501
[30] Gühne O and Seevinck M 2010 New J. Phys. 12 053002

Related articles from Frontiers Journals
[1] Changhao Zhao, Yongcheng He, Xiao Geng, Kaiyong He, Genting Dai, Jianshe Liu, and Wei Chen. Multi-Mode Bus Coupling Architecture of Superconducting Quantum Processor[J]. Chin. Phys. Lett., 2023, 40(1): 060302
[2] Chen Wang, Lu-Qin Wang, and Jie Ren. Managing Quantum Heat Transfer in a Nonequilibrium Qubit-Phonon Hybrid System with Coherent Phonon States[J]. Chin. Phys. Lett., 2021, 38(1): 060302
[3] Guobin Chen, Yang Hui, Junci Sun, Wenhao He, and Guanxiang Du. Rapid Measurement and Control of Nitrogen-Vacancy Center-Axial Orientation in Diamond Particles[J]. Chin. Phys. Lett., 2020, 37(11): 060302
[4] Liwei Duan, Yan-Zhi Wang, and Qing-Hu Chen. $\mathcal{PT}$ Symmetry of a Square-Wave Modulated Two-Level System[J]. Chin. Phys. Lett., 2020, 37(8): 060302
[5] Xiao-Lan Zong, Wei Song, Ming Yang, Zhuo-Liang Cao. Influence of Quantum Feedback Control on Excitation Energy Transfer *[J]. Chin. Phys. Lett., 0, (): 060302
[6] Xiao-Lan Zong, Wei Song, Ming Yang, Zhuo-Liang Cao. Influence of Quantum Feedback Control on Excitation Energy Transfer[J]. Chin. Phys. Lett., 2020, 37(6): 060302
[7] Zi Cai, Yizhen Huang, W. Vincent Liu. Imaginary Time Crystal of Thermal Quantum Matter[J]. Chin. Phys. Lett., 2020, 37(5): 060302
[8] Bing-Bing Chai, Jin-Liang Guo. Distillability of Sudden Death in Qutrit-Qutrit Systems under Global Mixed Noise[J]. Chin. Phys. Lett., 2019, 36(5): 060302
[9] Yang Yang, An-Min Wang, Lian-Zhen Cao, Jia-Qiang Zhao, Huai-Xin Lu. Frozen Quantum Coherence for a Central Two-Qubit System in a Spin-Chain Environment[J]. Chin. Phys. Lett., 2018, 35(8): 060302
[10] Jun Wen, Guan-Qiang Li. Preservation of Quantum Coherence for Gaussian-State Dynamics in a Non-Markovian Process[J]. Chin. Phys. Lett., 2018, 35(6): 060302
[11] Lei Du, Zhihao Xu, Chuanhao Yin, Liping Guo. Dynamical Evolution of an Effective Two-Level System with $\mathcal{PT}$ Symmetry[J]. Chin. Phys. Lett., 2018, 35(5): 060302
[12] Kang-Kang Ju, Cui-Xian Guo, Xiao-Yin Pan. Initial-Slip Term Effects on the Dissipation-Induced Transition of a Simple Harmonic Oscillator[J]. Chin. Phys. Lett., 2017, 34(1): 060302
[13] H. A. Zad. Total Pairwise Quantum Correlation and Entanglement in a Mixed-Three-Spin Ising-$XY$ Model with Added Dzyaloshinskii–Moriya Interaction under Decoherence[J]. Chin. Phys. Lett., 2016, 33(09): 060302
[14] Hong-Mei Zou, Mao-Fa Fang. Controlling Entropic Uncertainty in the Presence of Quantum Memory by Non-Markovian Effects and Atom–Cavity Couplings[J]. Chin. Phys. Lett., 2016, 33(07): 060302
[15] Da-Chuang Li, Xian-Ping Wang, Hu Li, Xiao-Man Li, Ming Yang, Zhuo-Liang Cao. Effects of Pure Dzyaloshinskii–Moriya Interaction with Magnetic Field on Entanglement in Intrinsic Decoherence[J]. Chin. Phys. Lett., 2016, 33(05): 060302
Viewed
Full text


Abstract