Chin. Phys. Lett.  2015, Vol. 32 Issue (06): 066101    DOI: 10.1088/0256-307X/32/6/066101
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Enhanced Magnetic and Dielectric Properties in Low-Content Tb-Doped BiFeO3 Nanoparticles
GUO Min-Chen1, LIU Wei-Fang1**, WU Ping1, ZHANG Hong1, XU Xun-Ling1, WANG Shou-Yu2, RAO Guang-Hui3
1Department of Applied Physics, Institute of Advanced Materials Physics, Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Faculty of Science, Tianjin University, Tianjin 300072
2College of Physics and Material Science, Tianjin Normal University, Tianjin 300074
3Department of Information Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004
Cite this article:   
GUO Min-Chen, LIU Wei-Fang, WU Ping et al  2015 Chin. Phys. Lett. 32 066101
Download: PDF(1649KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Bi1?xTbxFeO3 (x=0, 0.01, 0.03 and 0.05) nanoparticles are synthesized by the sol-gel method. A single phase perovskite rhombohedral structure of all the samples is established from the Rietveld refined XRD patterns. The substitution of Tb3+ ions to Bi3+ decreases the particle size and enhances the ferromagnetic properties of this system. Interestingly a large maximum magnetization value of 1.73 emu/g at 50 kOe can be observed in 1% Tb-doped sample at 300 K. The decrease in band gap may result from the reduced particle size, while the leakage current density also decreases, which is mainly explained by the variation of oxygen vacancies.
Received: 19 November 2014      Published: 30 June 2015
PACS:  61.05.cp (X-ray diffraction)  
  75.75.-c (Magnetic properties of nanostructures)  
  77.90.+k (Other topics in dielectrics, piezoelectrics, and ferroelectrics and their properties)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/6/066101       OR      https://cpl.iphy.ac.cn/Y2015/V32/I06/066101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GUO Min-Chen
LIU Wei-Fang
WU Ping
ZHANG Hong
XU Xun-Ling
WANG Shou-Yu
RAO Guang-Hui
[1] Hou L, Zuo K H, Sun Q B, Ren Z M, Zeng Y P and Li X 2013 Appl. Phys. Lett. 102 082901
[2] Khomchenko V A, Karpinsky D V, Kholkin A L, Sobolev N A, Kakazei G N, Araujo J P, Troyanchuk I O, Costa B F O and Paix?o J A 2010 J. Appl. Phys. 108 074109
[3] Nuraje N and Su K 2013 Nanoscale 5 8752
[4] Makhdoom A R, Akhtar M J, Rafiq M A, Hassan M M and Makhdoom A R 2012 Ceram. Int. 38 3829
[5] Chakrabarti K, Das K, Sarkar B, Ghosh S, De S K, Sinha G and Lahtinen J 2012 Appl. Phys. Lett. 101 042401
[6] Lotey G S and Verma N K 2012 J. Nanopart. Res. 14 742
[7] Hu W W, Chen Y, Yuan H M, Li G H, Qiao Y, Qin Y Y and Feng S H 2011 J. Phys. Chem. C 115 8869
[8] Chauhan S, Arora M, Sati P C, Chhoker S, Katyal S C and Kumar M 2013 Ceram. Int. 39 6399
[9] Das S R, Choudhary R N P, Bhattacharya P and Katiyara R S 2007 J. Appl. Phys. 101 034104
[10] Srivastav S K, Gajbhiye N S and Banerjee A 2013 J. Appl. Phys. 113 203917
[11] Lotey G S and Verma N K 2013 Mater. Lett. 111 55
[12] Sati P C, Arora M, Chauhan S, Kumar M and Chhoker S 2014 J. Phys. Chem. Solids 75 105
[13] Lotey G S and Verma N K 2013 J. Nanopart. Res. 15 1553
[14] Zhang J, Wu Y J, Chen X K and Chen X J 2013 J. Phys. Chem. Solids 74 849
[15] Park T J, Papaefthymiou G C, Viescas A J, Moodenbaugh A R and Wong S S 2007 Nano Lett. 7 766
[16] Arya G S and Negi N S 2013 J. Phys. D 46 095004
[17] Bhushan B, Basumallick A, Vasanthacharya N Y, Kumar S and Das D 2010 Solid State Sci. 12 1063
[18] Eerenstein W, Mathur N D and Scott J F 2006 Nature 442 759
[19] Zhang H, Liu W F, Wu P, Hai X, Wang S Y, Liu G Y and Rao G H 2014 J. Nanopart. Res. 16 2205
[20] Yang C H, Kan D, Takeuchi I, Nagarajan V and Seidel J 2012 Phys. Chem. Chem. Phys. 14 15953
[21] Tauc J 1974 Amorphous and Liquid Semiconductors (New York: Springer)
[22] Joshi U A, Jang J S, Borse P H and Lee J S 2008 Appl. Phys. Lett. 92 242106
[23] Mocherla P S V, Karthik C, Ubic R, Ramachandra Rao M S and Sudakar C 2013 Appl. Phys. Lett. 103 022910
Related articles from Frontiers Journals
[1] Jian Zhang, Shengxi Zhang, Xiaofang Qiu, Yan Wu, Qiang Sun, Jin Zou, Tianxin Li, Pingping Chen. MBE Growth and Characterization of Strained HgTe (111) Films on CdTe/GaAs[J]. Chin. Phys. Lett., 2020, 37(3): 066101
[2] Shu-Qing Jiang, Xue Yang, Xiao-Li Huang, Yan-Ping Huang, Xin Li, Tian Cui. The Unexpected Stability of Hydrazine Molecules in Hydrous Environment under Pressure[J]. Chin. Phys. Lett., 2020, 37(1): 066101
[3] Hao Wu, Yong-Hui Zhou, Yi-Fang Yuan, Chun-Hua Chen, Ying Zhou, Bo-Wen Zhang, Xu-Liang Chen, Chuan-Chuan Gu, Chao An, Shu-Yang Wang, Meng-Yao Qi, Ran-Ran Zhang, Li-Li Zhang, Xin-Jian Li, Zhao-Rong Yang. Pressure-Induced Metallization Accompanied by Elongated S–S Dimer in Charge Transfer Insulator NiS$_{2}$[J]. Chin. Phys. Lett., 2019, 36(10): 066101
[4] Xin Li, Jing-Zhi Han, Xiong-Zuo Zhang, Yin-Feng Zhang, Hai-Dong Tian, Ming-Zhu Xue, Kun Li, Xin Wen, Wen-Yun Yang, Shun-Quan Liu, Chang-Sheng Wang, Hong-Lin Du, Xiao-Dong Zhang, Xin-An Wang, Ying-Chang Yang, Jin-Bo Yang. Strain Induced Nanopillars and Variation of Magnetic Properties in La$_{0.825}$Sr$_{0.175}$MnO$_{3}$/LaAlO$_{3}$ Films[J]. Chin. Phys. Lett., 2019, 36(4): 066101
[5] Sheng Jiang, Jing Liu, Xiao-Dong Li, Yan-Chun Li, Shang-Ming He, Ji-Chao Zhang. High-Pressure Phase Transitions of Cubic Y$_{2}$O$_{3}$ under High Pressures by In-situ Synchrotron X-Ray Diffraction[J]. Chin. Phys. Lett., 2019, 36(4): 066101
[6] Lun Xiong, Li-Gang Bai, Xiao-Dong Li, Jing Liu. Radial X-Ray Diffraction Study of Static Strength of Tantalum to 80GPa[J]. Chin. Phys. Lett., 2017, 34(10): 066101
[7] Peng-Shan Li, Wei-Ran Cui, Rui Li, Hua-Lei Sun, Yan-Chun Li, Dong-Liang Yang, Yu Gong, Hui Li, Xiao-Dong Li. LaB$_{6}$ Work Function and Structural Stability under High Pressure[J]. Chin. Phys. Lett., 2017, 34(7): 066101
[8] Fei Sun, Cong Xu, Shuang Yu, Bi-Juan Chen, Guo-Qiang Zhao, Zheng Deng, Wen-Ge Yang, Chang-Qing Jin. Synchrotron X-Ray Diffraction Studies on the New Generation Ferromagnetic Semiconductor Li(Zn,Mn)As under High Pressure[J]. Chin. Phys. Lett., 2017, 34(6): 066101
[9] R. Perumal, Z. Hassan, R.Saravanan. Structural, Morphological and Electrical Properties of In-Doped Zinc Oxide Nanostructure Thin Films Grown on p-Type Gallium Nitride by Simultaneous Radio-Frequency Direct-Current Magnetron Co-Sputtering[J]. Chin. Phys. Lett., 2016, 33(06): 066101
[10] N. Panahi, M. T. Hosseinnejad, M. Shirazi, M. Ghoranneviss. Optimization of Gas Sensing Performance of Nanocrystalline SnO$_{2}$ Thin Films Synthesized by Magnetron Sputtering[J]. Chin. Phys. Lett., 2016, 33(06): 066101
[11] Zhang-Yin Zhai, Qi-Yun Xie, Gui-Bin Chen, Xiao-Shan Wu, Ju Gao. Current-Induced Reversible Resistance Jumps in La$_{0.8}$Ca$_{0.2}$MnO$_{3}$ Microbridge[J]. Chin. Phys. Lett., 2016, 33(05): 066101
[12] Yan-Chun Hu, Ya-Wen Cui, Xian-Wei Wang, Yi-Pu Liu. Effect of Quench Treatment on Fe/Mo Order and Magnetic Properties of Double Perovskite Sr$_{2}$FeMoO$_{6}$[J]. Chin. Phys. Lett., 2016, 33(02): 066101
[13] JIANG Feng-Xian, ZHAO Ye, ZHOU Guo-Wei, ZHANG Jun, FAN Jiu-Ping, XU Xiao-Hong. Structure and Magnetic Properties of the γ'-Fe4N Films on Cu Underlayers[J]. Chin. Phys. Lett., 2015, 32(08): 066101
[14] HE Qiang, GUO Yong-Quan. Structures and Magnetic Properties of Europium-Transition Metal-Gallium Ternary Intermetallic Compounds with 1:3 Type[J]. Chin. Phys. Lett., 2015, 32(01): 066101
[15] WANG Huan, YAO Shu-De. Chemical Composition Dependent Elastic Strain in AlGaN Epilayers[J]. Chin. Phys. Lett., 2014, 31(10): 066101
Viewed
Full text


Abstract