CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Enhanced Magnetic and Dielectric Properties in Low-Content Tb-Doped BiFeO3 Nanoparticles |
GUO Min-Chen1, LIU Wei-Fang1**, WU Ping1, ZHANG Hong1, XU Xun-Ling1, WANG Shou-Yu2, RAO Guang-Hui3 |
1Department of Applied Physics, Institute of Advanced Materials Physics, Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Faculty of Science, Tianjin University, Tianjin 300072 2College of Physics and Material Science, Tianjin Normal University, Tianjin 300074 3Department of Information Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004
|
|
Cite this article: |
GUO Min-Chen, LIU Wei-Fang, WU Ping et al 2015 Chin. Phys. Lett. 32 066101 |
|
|
Abstract Bi1?xTbxFeO3 (x=0, 0.01, 0.03 and 0.05) nanoparticles are synthesized by the sol-gel method. A single phase perovskite rhombohedral structure of all the samples is established from the Rietveld refined XRD patterns. The substitution of Tb3+ ions to Bi3+ decreases the particle size and enhances the ferromagnetic properties of this system. Interestingly a large maximum magnetization value of 1.73 emu/g at 50 kOe can be observed in 1% Tb-doped sample at 300 K. The decrease in band gap may result from the reduced particle size, while the leakage current density also decreases, which is mainly explained by the variation of oxygen vacancies.
|
|
Received: 19 November 2014
Published: 30 June 2015
|
|
PACS: |
61.05.cp
|
(X-ray diffraction)
|
|
75.75.-c
|
(Magnetic properties of nanostructures)
|
|
77.90.+k
|
(Other topics in dielectrics, piezoelectrics, and ferroelectrics and their properties)
|
|
|
|
|
[1] Hou L, Zuo K H, Sun Q B, Ren Z M, Zeng Y P and Li X 2013 Appl. Phys. Lett. 102 082901 [2] Khomchenko V A, Karpinsky D V, Kholkin A L, Sobolev N A, Kakazei G N, Araujo J P, Troyanchuk I O, Costa B F O and Paix?o J A 2010 J. Appl. Phys. 108 074109 [3] Nuraje N and Su K 2013 Nanoscale 5 8752 [4] Makhdoom A R, Akhtar M J, Rafiq M A, Hassan M M and Makhdoom A R 2012 Ceram. Int. 38 3829 [5] Chakrabarti K, Das K, Sarkar B, Ghosh S, De S K, Sinha G and Lahtinen J 2012 Appl. Phys. Lett. 101 042401 [6] Lotey G S and Verma N K 2012 J. Nanopart. Res. 14 742 [7] Hu W W, Chen Y, Yuan H M, Li G H, Qiao Y, Qin Y Y and Feng S H 2011 J. Phys. Chem. C 115 8869 [8] Chauhan S, Arora M, Sati P C, Chhoker S, Katyal S C and Kumar M 2013 Ceram. Int. 39 6399 [9] Das S R, Choudhary R N P, Bhattacharya P and Katiyara R S 2007 J. Appl. Phys. 101 034104 [10] Srivastav S K, Gajbhiye N S and Banerjee A 2013 J. Appl. Phys. 113 203917 [11] Lotey G S and Verma N K 2013 Mater. Lett. 111 55 [12] Sati P C, Arora M, Chauhan S, Kumar M and Chhoker S 2014 J. Phys. Chem. Solids 75 105 [13] Lotey G S and Verma N K 2013 J. Nanopart. Res. 15 1553 [14] Zhang J, Wu Y J, Chen X K and Chen X J 2013 J. Phys. Chem. Solids 74 849 [15] Park T J, Papaefthymiou G C, Viescas A J, Moodenbaugh A R and Wong S S 2007 Nano Lett. 7 766 [16] Arya G S and Negi N S 2013 J. Phys. D 46 095004 [17] Bhushan B, Basumallick A, Vasanthacharya N Y, Kumar S and Das D 2010 Solid State Sci. 12 1063 [18] Eerenstein W, Mathur N D and Scott J F 2006 Nature 442 759 [19] Zhang H, Liu W F, Wu P, Hai X, Wang S Y, Liu G Y and Rao G H 2014 J. Nanopart. Res. 16 2205 [20] Yang C H, Kan D, Takeuchi I, Nagarajan V and Seidel J 2012 Phys. Chem. Chem. Phys. 14 15953 [21] Tauc J 1974 Amorphous and Liquid Semiconductors (New York: Springer) [22] Joshi U A, Jang J S, Borse P H and Lee J S 2008 Appl. Phys. Lett. 92 242106 [23] Mocherla P S V, Karthik C, Ubic R, Ramachandra Rao M S and Sudakar C 2013 Appl. Phys. Lett. 103 022910 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|