Chin. Phys. Lett.  2015, Vol. 32 Issue (06): 060303    DOI: 10.1088/0256-307X/32/6/060303
GENERAL |
Quantum State Transfer among Three Ring-Connected Atoms
GUO Yan-Qing1**, DENG Yao1, PEI Pei1, TONG Dian-Min2, WANG Dian-Fu1, MI Dong1
1Department of Physics, Dalian Maritime University, Dalian 116026
2School of Physics, Shandong University, Jinan 250100
Cite this article:   
GUO Yan-Qing, DENG Yao, PEI Pei et al  2015 Chin. Phys. Lett. 32 060303
Download: PDF(770KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A robust quantum state transfer scheme is discussed for three atoms that are trapped by separated cavities linked via optical fibers in a ring connection. It is shown that, under the effective three-atom Ising model, an arbitrary unknown quantum state can be transferred from one atom to another deterministically via an auxiliary atom with maximum unit fidelity. The only required operation for this scheme is replicating turning on/off the local laser fields applied to the atoms for two steps with time cost √2π/Γ0. The scheme is insensitive to cavity leakage and atomic position due to the condition Δκ?g. Another advantage of this scheme is that the cooperative influence of spontaneous emission and operating time error can reduce the time cost for maximum fidelity and thus can speed up the implementation of quantum state transfer.
Received: 17 December 2014      Published: 30 June 2015
PACS:  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/6/060303       OR      https://cpl.iphy.ac.cn/Y2015/V32/I06/060303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GUO Yan-Qing
DENG Yao
PEI Pei
TONG Dian-Min
WANG Dian-Fu
MI Dong
[1] Serafini A, Mancini S and Bose S 2006 Phys. Rev. Lett. 96 010503
[2] Mancini S and Bose S 2004 Phys. Rev. A 70 022307
[3] Zhan X, Qin H, Bian Z H, Li J and Xue P 2014 Phys. Rev. A 90 012331
[4] Rosenfeld W, Berner S, Volz J, Weber M and Weinfurter H 2007 Phys. Rev. Lett. 98 050504
[5] Li Y N, Mei F, Yu Y F and Zhang Z M 2011 Chin. Phys. B 20 110305
[6] Razavi M and Shapiro J H 2006 Phys. Rev. A 73 042303
[7] Zheng S B and Guo G C 2006 Phys. Rev. A 73 032329
[8] Duan L M, Madsen M J, Moehring D L, Maunz P, Kohn R N and Monroe C 2006 Phys. Rev. A 73 062324
[9] Yin Z Q and Li F L 2007 Phys. Rev. A 75 012324
[10] Lu D M and Zheng S B 2007 Chin. Phys. Lett. 24 596
[11] Wang Y D and Clerk A A 2012 Phys. Rev. Lett. 108 153603
[12] Franco C Di, Paternostro M and Kim M S 2008 Phys. Rev. Lett. 101 230502
[13] Korzekwa K, Machnikowski P and Horodecki P 2014 Phys. Rev. A 89 062301
[14] Liu Y and Zhou D L 2014 Phys. Rev. A 89 062331
[15] Biswas A and Agarwal G S 2004 Phys. Rev. A 70 022323
[16] Bevilacqua G and Renzoni F 2013 Phys. Rev. A 88 033817
[17] Moehring D L, Maunz P, Olmschenk S, Younge K C, Matsukevich D N, Duan L M and Monroe C 2007 Nature 449 68
[18] Li C F, Guo G C and Ge R C 2012 Chin. Phys. Lett. 29 030307
[19] Zhong Z R, Zhang B, Lin X and Su W J 2011 Chin. Phys. Lett. 28 120303
[20] Guo Y Q, Chen J and Song H S 2006 Chin. Phys. Lett. 23 1088
[21] Walls D F and Milburn G J 1994 Quantum Opt. (Berlin: Springer) chap 7 p 121
[22] ?temlmachovi? P and Bu?ek V 2004 Phys. Rev. A 70 032313
[23] Furman G B, Meerovich V M and Sokolovsky V L 2008 Phys. Rev. A 77 062330
[24] Guo Y Q, Zhong H Y, Zhang Y H and Song H S 2008 Chin. Phys. Lett. 25 2362
[25] Lee J S and Khitrin A K 2005 Phys. Rev. A 71 062338
[26] Cho J and Lee H W 2005 Phys. Rev. Lett. 95 160501
[27] Tittel W, Brendel J, Gisin B, Herzog T, Zbinden H and Gisin N 1998 Phys. Rev. A 57 3229
[28] Yi X X, Wu S L, Wu C F, Feng X L and Oh C H 2011 J. Phys. B: At. Mol. Opt. Phys. 44 195503
Related articles from Frontiers Journals
[1] Shaowei Li, Daojin Fan, Ming Gong, Yangsen Ye, Xiawei Chen, Yulin Wu, Huijie Guan, Hui Deng, Hao Rong, He-Liang Huang, Chen Zha, Kai Yan, Shaojun Guo, Haoran Qian, Haibin Zhang, Fusheng Chen, Qingling Zhu, Youwei Zhao, Shiyu Wang, Chong Ying, Sirui Cao, Jiale Yu, Futian Liang, Yu Xu, Jin Lin, Cheng Guo, Lihua Sun, Na Li, Lianchen Han, Cheng-Zhi Peng, Xiaobo Zhu, and Jian-Wei Pan. Realization of Fast All-Microwave Controlled-Z Gates with a Tunable Coupler[J]. Chin. Phys. Lett., 2022, 39(3): 060303
[2] Xin-Wei Zha , Min-Rui Wang, and Ruo-Xu Jiang . Constructing a Maximally Entangled Seven-Qubit State via Orthogonal Arrays[J]. Chin. Phys. Lett., 2020, 37(9): 060303
[3] Qian Dong, M. A. Mercado Sanchez, Guo-Hua Sun, Mohamad Toutounji, Shi-Hai Dong. Tripartite Entanglement Measures of Generalized GHZ State in Uniform Acceleration[J]. Chin. Phys. Lett., 2019, 36(10): 060303
[4] Sheng-Li Zhang, Song Yang. Methods for Derivation of Density Matrix of Arbitrary Multi-Mode Gaussian States from Its Phase Space Representation[J]. Chin. Phys. Lett., 2019, 36(9): 060303
[5] Jie Zhou, Hui-Xian Meng, Jing-Ling Chen. Detecting Quantumness in the $n$-cycle Exclusivity Graphs[J]. Chin. Phys. Lett., 2019, 36(8): 060303
[6] Feng-Lin Wu, Si-Yuan Liu, Wen-Li Yang, Heng Fan. Construction of Complete Orthogonal Genuine Multipartite Entanglement State[J]. Chin. Phys. Lett., 2019, 36(6): 060303
[7] Bing-Bing Chai, Jin-Liang Guo. Distillability of Sudden Death in Qutrit-Qutrit Systems under Global Mixed Noise[J]. Chin. Phys. Lett., 2019, 36(5): 060303
[8] Meng Qin, Li Wang, Bili Wang, Xiao Wang, Zhong Bai, Yanbiao Li. Renormalization of Tripartite Entanglement in Spin Systems with Dzyaloshinskii–Moriya Interaction[J]. Chin. Phys. Lett., 2018, 35(10): 060303
[9] Sheng-Li Zhang, Chen-Hui Jin, Jian-Hong Shi , Jian-Sheng Guo, Xu-Bo Zou, Guang-Can Guo. Continuous Variable Quantum Teleportation in Beam-Wandering Modeled Atmosphere Channel[J]. Chin. Phys. Lett., 2017, 34(4): 060303
[10] Sheng-Li Zhang, Chen-Hui Jin, Jian-Sheng Guo, Jian-Hong Shi, Xu-Bo Zou, Guang-Can Guo. Decoy State Quantum Key Distribution via Beam-Wandering Modeled Atmosphere Channel[J]. Chin. Phys. Lett., 2016, 33(12): 060303
[11] Yong-Gang Tan, Qiang Liu. Measurement-Device-Independent Quantum Key Distribution with Two-Way Local Operations and Classical Communications[J]. Chin. Phys. Lett., 2016, 33(09): 060303
[12] Jin-Tao Tan, Yun-Rong Luo, Zheng Zhou, Wen-Hua Hai. Combined Effect of Classical Chaos and Quantum Resonance on Entanglement Dynamics[J]. Chin. Phys. Lett., 2016, 33(07): 060303
[13] Sheng-Li Zhang, Jian-Sheng Guo, Jian-Hong Shi, Xu-Bo Zou. Distillation of Atmospherically Disturbed Continuous Variable Quantum Entanglement with Photon Subtraction[J]. Chin. Phys. Lett., 2016, 33(07): 060303
[14] Hong-Mei Zou, Mao-Fa Fang. Controlling Entropic Uncertainty in the Presence of Quantum Memory by Non-Markovian Effects and Atom–Cavity Couplings[J]. Chin. Phys. Lett., 2016, 33(07): 060303
[15] Da-Chuang Li, Xian-Ping Wang, Hu Li, Xiao-Man Li, Ming Yang, Zhuo-Liang Cao. Effects of Pure Dzyaloshinskii–Moriya Interaction with Magnetic Field on Entanglement in Intrinsic Decoherence[J]. Chin. Phys. Lett., 2016, 33(05): 060303
Viewed
Full text


Abstract