GENERAL |
|
|
|
|
Quantum State Transfer among Three Ring-Connected Atoms |
GUO Yan-Qing1**, DENG Yao1, PEI Pei1, TONG Dian-Min2, WANG Dian-Fu1, MI Dong1 |
1Department of Physics, Dalian Maritime University, Dalian 116026 2School of Physics, Shandong University, Jinan 250100
|
|
Cite this article: |
GUO Yan-Qing, DENG Yao, PEI Pei et al 2015 Chin. Phys. Lett. 32 060303 |
|
|
Abstract A robust quantum state transfer scheme is discussed for three atoms that are trapped by separated cavities linked via optical fibers in a ring connection. It is shown that, under the effective three-atom Ising model, an arbitrary unknown quantum state can be transferred from one atom to another deterministically via an auxiliary atom with maximum unit fidelity. The only required operation for this scheme is replicating turning on/off the local laser fields applied to the atoms for two steps with time cost √2π/Γ0. The scheme is insensitive to cavity leakage and atomic position due to the condition Δ≈κ?g. Another advantage of this scheme is that the cooperative influence of spontaneous emission and operating time error can reduce the time cost for maximum fidelity and thus can speed up the implementation of quantum state transfer.
|
|
Received: 17 December 2014
Published: 30 June 2015
|
|
PACS: |
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
42.50.Pq
|
(Cavity quantum electrodynamics; micromasers)
|
|
|
|
|
[1] Serafini A, Mancini S and Bose S 2006 Phys. Rev. Lett. 96 010503 [2] Mancini S and Bose S 2004 Phys. Rev. A 70 022307 [3] Zhan X, Qin H, Bian Z H, Li J and Xue P 2014 Phys. Rev. A 90 012331 [4] Rosenfeld W, Berner S, Volz J, Weber M and Weinfurter H 2007 Phys. Rev. Lett. 98 050504 [5] Li Y N, Mei F, Yu Y F and Zhang Z M 2011 Chin. Phys. B 20 110305 [6] Razavi M and Shapiro J H 2006 Phys. Rev. A 73 042303 [7] Zheng S B and Guo G C 2006 Phys. Rev. A 73 032329 [8] Duan L M, Madsen M J, Moehring D L, Maunz P, Kohn R N and Monroe C 2006 Phys. Rev. A 73 062324 [9] Yin Z Q and Li F L 2007 Phys. Rev. A 75 012324 [10] Lu D M and Zheng S B 2007 Chin. Phys. Lett. 24 596 [11] Wang Y D and Clerk A A 2012 Phys. Rev. Lett. 108 153603 [12] Franco C Di, Paternostro M and Kim M S 2008 Phys. Rev. Lett. 101 230502 [13] Korzekwa K, Machnikowski P and Horodecki P 2014 Phys. Rev. A 89 062301 [14] Liu Y and Zhou D L 2014 Phys. Rev. A 89 062331 [15] Biswas A and Agarwal G S 2004 Phys. Rev. A 70 022323 [16] Bevilacqua G and Renzoni F 2013 Phys. Rev. A 88 033817 [17] Moehring D L, Maunz P, Olmschenk S, Younge K C, Matsukevich D N, Duan L M and Monroe C 2007 Nature 449 68 [18] Li C F, Guo G C and Ge R C 2012 Chin. Phys. Lett. 29 030307 [19] Zhong Z R, Zhang B, Lin X and Su W J 2011 Chin. Phys. Lett. 28 120303 [20] Guo Y Q, Chen J and Song H S 2006 Chin. Phys. Lett. 23 1088 [21] Walls D F and Milburn G J 1994 Quantum Opt. (Berlin: Springer) chap 7 p 121 [22] ?temlmachovi? P and Bu?ek V 2004 Phys. Rev. A 70 032313 [23] Furman G B, Meerovich V M and Sokolovsky V L 2008 Phys. Rev. A 77 062330 [24] Guo Y Q, Zhong H Y, Zhang Y H and Song H S 2008 Chin. Phys. Lett. 25 2362 [25] Lee J S and Khitrin A K 2005 Phys. Rev. A 71 062338 [26] Cho J and Lee H W 2005 Phys. Rev. Lett. 95 160501 [27] Tittel W, Brendel J, Gisin B, Herzog T, Zbinden H and Gisin N 1998 Phys. Rev. A 57 3229 [28] Yi X X, Wu S L, Wu C F, Feng X L and Oh C H 2011 J. Phys. B: At. Mol. Opt. Phys. 44 195503 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|