CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Molecular Beam Epitaxy Growth and Scanning Tunneling Microscopy Study of Pyrite CuSe2 Films on SrTiO3 |
PENG Jun-Ping1, ZHANG Hui-Min1, SONG Can-Li2,3, JIANG Ye-Ping1,2, WANG Li-Li2,3, HE Ke2,3, XUE Qi-Kun2,3, MA Xu-Cun1,2,3** |
1State Key Laboratory for Surface Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 2State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084 3Collaborative Innovation Center of Quantum Matter, Beijing 100084
|
|
Cite this article: |
PENG Jun-Ping, ZHANG Hui-Min, SONG Can-Li et al 2015 Chin. Phys. Lett. 32 068104 |
|
|
Abstract We perform molecular beam epitaxy growth and scanning tunneling microscopy study of copper diselenide (CuSe2) films on SrTiO3(001). Using a Se-rich condition, the single-phase pyrite CuSe2 grows in the Stranski–Krastanov (layer-plus-island) mode with a preferential orientation of (111). Our careful inspection of both the as-grown and post-annealed CuSe2 films at various temperatures invariably shows a Cu-terminated surface, which, depending on the annealing temperature, reconstructs into two distinct structures 2×√3 and √3×√3-R30°. The Cu termination is supported by the depressed density of states near the Fermi level, measured by in-situ low temperature scanning tunneling spectroscopy. Our study helps understand the preparation and surface chemistry of transition metal pyrite dichalcogenides thin films.
|
|
Received: 20 April 2015
Published: 30 June 2015
|
|
PACS: |
81.15.Hi
|
(Molecular, atomic, ion, and chemical beam epitaxy)
|
|
68.37.Ef
|
(Scanning tunneling microscopy (including chemistry induced with STM))
|
|
68.55.-a
|
(Thin film structure and morphology)
|
|
|
|
|
[1] Okimura H, Matsumae T and Makabe R 1980 Thin Solid Films 71 53 [2] Lakshmikumar S T and Rastogi A C 1994 Sol. Energy Mater. Sol. Cells 32 7 [3] Toyoji H and Hiroshi Y 1990 Jpn. Kokai Tokkyo Koho JP 02 173622 [4] Chen W S, Stewart J M and Mickelson R A 1985 Appl. Phys. Lett. 46 1095 [5] Korzhuev M A 1998 Phys. Solid State 40 217 [6] Bhuse V M, Hankare P P, Garadkar K M and Khomane A S 2003 Mater. Chem. Phys. 80 82 [7] Liu H L, Shi X, Xu F F, Zhang L L, Zhang W Q, Chen L D, Li Q, Uher C, Day T and Snyder G J 2012 Nat. Mater. 11 422 [8] Xu J, Zhang W X, Yang Z H, Ding S X, Zeng C Y, Chen L L, Wang Q and Yang S H 2009 Adv. Funct. Mater. 19 1759 [9] Gosavi S R, Deshpande N G, Gudage Y G and Sharma R 2008 J. Alloys Compd. 448 344 [10] Bither T A, Prewitt C T, Gillson J L, Bierstedt P E, Flippen R B and Young H S 1966 Solid State Commun. 4 533 [11] Hull G W and Hulliger F 1968 Nature 220 257 [12] Krill G, Panissod P, Lapierre M F, Gautier F, Robert C and Eddine M N 1976 J. Phys. C 9 1521 [13] Kontani M, Tutui T, Moriwaka T and Mizukoshi T 2000 Physica B 284 675 [14] Bither T A, Bouchard R J, Cloud W H, Donohue P C and Siemons W J 1968 Inorg. Chem. 7 2208 [15] Ohtani T, Motoki M, Koh K and Ohshima K 1995 Mater. Res. Bull. 30 1495 [16] Datta K K R, Kulkarni C and Eswaramoorthy M 2010 Chem. Commun. 46 616 [17] Wang W D, Jin Z G, Liu H and Du H Y 2011 Mater. Lett. 65 2895 [18] Liu T, Jin Z G, Li J, Wang J, Wang D L, Lai J Y and Du H Y 2013 CrystEngComm 15 8903 [19] Chakrabarti D J and Laughlin D E 1981 Bull. Alloy Phase Diagrams 2 305 [20] Glazov V M, Pashinkin A S and Fedorov V A 2000 Inorg. Mater. 36 641 [21] Song C L, Wang Y L, Jiang Y P, Zhang Y, Chang C Z, Wang L L, He K, Chen X, Jia J F, Wang Y Y, Fang Z, Dai X, Xie X C, Qi X L, Zhang S C, Xue Q K and Ma X C 2010 Appl. Phys. Lett. 97 143118 [22] Song C L, Wang Y L, Cheng P, Jiang Y P, Li W, Zhang T, Li Z, He K, Wang L L, Jia J F, Hung H H, Wu C J, Ma X C, Chen X and Xue Q K 2011 Science 332 1410 [23] Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C and Xue Q K 2012 Chin. Phys. Lett. 29 037402 [24] Zhang Y, Chang T R, Zhou B, Cui Y T, Yan H, Liu Z, Schmitt F, Lee J, Moore R, Chen Y, Lin H, Jeng H T, Mo S K, Hussain Z, Bansil A and Shen Z X 2013 Nat. Nanotechnol. 9 111 [25] Peng J P, Guan J Q, Zhang H M, Song C L, Wang L L, He K, Xue Q K and Ma X C 2015 Phys. Rev. B 91 121113(R) [26] Kawasaki M, Takahashi K, Maeda T, Tsuchiya R, Shinohara M, Ishiyama O, Yonezawa T, Yoshimoto M and Koinuma H 1994 Science 266 1540 [27] Lin Y Y, Becerra-Toledo A E, Silly F, Poeppelmeier K R, Castell M R and Marks L D 2011 Surf. Sci. 605 L51 [28] Wang Y L, Jiang Y P, Chen M, Li Z, Song C L, Wang L L, He K, Chen X, Ma X C and Xue Q K 2012 J. Phys.: Condens. Matter 24 475604 [29] Hung A, Muscat J, Yarovsky I and Russo S P 2002 Surf. Sci. 520 111 [30] Fujimori A, Mamiya K, Mizokawa T, Miyadai T, Sekiguchi T, Takahashi H, Mori N and Suga S 1996 Phys. Rev. B 54 16329 [31] Ueda H, Nohara M, Kitazawa K, Takagi H, Fujimori A, Mizokawa T and Yagi T 2002 Phys. Rev. B 65 155104 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|