Chin. Phys. Lett.  2015, Vol. 32 Issue (06): 068701    DOI: 10.1088/0256-307X/32/6/068701
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Dynamics of Nano-Chain Diffusing in Porous Media
CHEN Jiang-Xing1,2, ZHENG Qiang1, HUANG Chun-Yun1, XU Jiang-Rong1**, YING He-Ping3
1Department of Physics, Hangzhou Dianzi University, Hangzhou 310018
2Department of Physics, Nanjing University, Nanjing 210093
3Department of Physics, Zhejiang University, Hangzhou 310027
Cite this article:   
CHEN Jiang-Xing, ZHENG Qiang, HUANG Chun-Yun et al  2015 Chin. Phys. Lett. 32 068701
Download: PDF(1293KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A coarse-grained model is proposed to study the dynamics of a nano-chain diffusing in porous media. The simulation utilizes a hybrid method which combines stochastic rotation dynamics with molecular dynamics. Solvent molecules are explicitly taken into account to represent the hydrodynamic interactions and random fluctuations. The conformation, relaxation, and diffusion properties of a polymer chain are investigated by changing the density degree of the obstacle matrix. It is found that the average size of the chain is a non-monotonic function of the obstacle volume fraction φ. A dense environment may contribute to extending a linear chain, which can be characterized by larger exponents in the corresponding power law. The relaxation behavior of a stretched chain to a steady state shows dramatic crossover from exponent to power-law relaxation when the values of φ are increased. The dependence of the diffusion coefficient on the chain size is also studied. Various kinds of scaling properties are presented and discussed. The results can give additional insight into the density effect of porous media on polymer structure and dynamics.
Received: 16 February 2015      Published: 30 June 2015
PACS:  87.15.A  
  36.20.-r (Macromolecules and polymer molecules)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/6/068701       OR      https://cpl.iphy.ac.cn/Y2015/V32/I06/068701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Jiang-Xing
ZHENG Qiang
HUANG Chun-Yun
XU Jiang-Rong
YING He-Ping
[1] Seksek O, Biwersi J and Verkman A S 1997 J. Cell Biol. 138 131
[2] Liu L, Li P S and Asher S A 1999 Nature 397 141
[3] Cao W P, Sun L Z, Wang C and Luo M B 2011 J. Chem. Phys. 135 174901
[4] Reichhardt C J Olson and Reichhardt C 2006 Phys. Rev. E 74 051908
[5] Li S B, Liu M J, Ji Y Y, Zhang L X and Liang H J 2011 Polym. J. 43 606
[6] Watari N, Makino M, Kikuchi N, Larson R G and Doi M 2007 J. Chem. Phys. 126 094902
[7] Sung B J, Chang R and Yethiraj A 2009 J. Chem. Phys. 130 094902
[8] Echeverria C and Kapral R 2010 J. Chem. Phys. 132 104902
[9] Vagias A, Raccis R, Koynov K, Jonas U, Butt H J, Fytas G, Kosovan P, Lenz O and Holm C 2013 Phys. Rev. Lett. 111 088301
[10] Chen J X, Zhu J X, Ma Y Q and Cao J 2014 Europhys. Lett. 106 18006
[11] Liu L and Luo K F 2014 J. Chem. Phys. 141 225102
[12] Chang R and Yethiraj A 2007 J. Chem. Phys. 126 174906
[13] Sung B J and Yethiraj A 2005 J. Chem. Phys. 123 074909
[14] Yamakov V and Milchev A 1997 Phys. Rev. E 55 1704
[15] Perkins T T, Smith D E and Chu S 1997 Science 276 2016
[16] Sakha F and fazli H 2010 J. Chem. Phys. 133 234904
[17] Kapral R 2008 Adv. Chem. Phys. 140 89
[18] Gompper G, Ihle T, Kroll D M and Winkler R G 2009 Adv. Polym. Sci. 221 1
[19] Dunlap D H, LaViolette D R A and Parris P E 1994 J. Chem. Phys. 100 8293
[20] Doi M and Edwards S F 1986 The Theory of Polymer Dynamics (Oxford: Oxford University Press)
Related articles from Frontiers Journals
[1] Zeng-Shuai Yan, Yao Xu, Hong-Ming Ding, and Yu-Qiang Ma. Molecular Insights into Striking Antibody Evasion of SARS-CoV-2 Omicron Variant[J]. Chin. Phys. Lett., 2022, 39(10): 068701
[2] Hong-ming Ding, Yue-wen Yin, Song-di Ni, Yan-jing Sheng, and Yu-qiang Ma. Accurate Evaluation on the Interactions of SARS-CoV-2 with Its Receptor ACE2 and Antibodies CR3022/CB6[J]. Chin. Phys. Lett., 2021, 38(1): 068701
[3] Xiaosong Chen. Strong Anisotropy of 3D Diffusion in Living Cells[J]. Chin. Phys. Lett., 2020, 37(8): 068701
[4] Chao Jiang, Bo Li, Shuo-Xing Dou, Peng-Ye Wang, and Hui Li. Quasi-Two-Dimensional Diffusion in Adherent Cells Revealed by Three-Dimensional Single Quantum Dot Tracking[J]. Chin. Phys. Lett., 2020, 37(7): 068701
[5] Zhi-Wei Yang, Yi-Zhen Zhao, Yong-Jian Zang, He Wang, Xun Zhu, Ling-Jie Meng, Xiao-Hui Yuan, Lei Zhang, Sheng-Li Zhang. Rapid Structure-Based Screening Informs Potential Agents for Coronavirus Disease (COVID-19) Outbreak[J]. Chin. Phys. Lett., 2020, 37(5): 068701
[6] Qian-Yun Liang, Chun-Li Pang, Jun-Wei Li, Su-Hua Zhang, Hui Liu, Yong Zhan, Hai-Long An. Allosteric Mechanism of Calmodulin Revealed by Targeted Molecular Dynamics Simulation[J]. Chin. Phys. Lett., 2017, 34(6): 068701
[7] Lin Tian, Zhang-Cai Long. Auditory Hopf Amplification Revealed by an Energy Method[J]. Chin. Phys. Lett., 2017, 34(4): 068701
[8] Xiao-Xiao Xie, Jun-Wei Li, Shao-Ying Xiao, Yu-Zhi Liu, Hui Liu, Jin-Peng Geng, Su-Hua Zhang, Hui Yu, Yong Zhan, Hai-Long An. The Structural Stability of Alpha-Helix Determined by the Preference of Amino Acids[J]. Chin. Phys. Lett., 2016, 33(02): 068701
[9] Jiang-Xing Chen, Qiang Zheng, Chun-Yun Huang, Jiang-Rong Xu, He-Ping Ying. Interaction of Pair Particles Mediated by Signal Molecules[J]. Chin. Phys. Lett., 2016, 33(01): 068701
[10] SONG Wei, HUANG Yi-Sheng, YANG Ming, CAO Zhuo-Liang. Motion-Enhanced Quantum Entanglement in the Dynamics of Excitation Transfer[J]. Chin. Phys. Lett., 2015, 32(08): 068701
[11] LI Jun-Wei, XIAO Shao-Ying, XIE Xiao-Xiao, YU Hui, ZHANG Hai-Lin, ZHAN Yong, AN Hai-Long. Identification of Three Interactions to Determine the Conformation Change and to Maintain the Function of Kir2.1 Channel Protein[J]. Chin. Phys. Lett., 2015, 32(02): 068701
[12] LI Duo-Fang, CAO Tian-Guang, GENG Jin-Peng, QIAO Li-Hua, GU Jian-Zhong, ZHAN Yong. Error Threshold of Fully Random Eigen Model[J]. Chin. Phys. Lett., 2015, 32(01): 068701
[13] YU Hong-Ping, LI Shi-Bin, ZHANG Peng, WU Shuang-Hong, WEI Xiong-Bang, WU Zhi-Ming, CHEN Zhi. Optical Performance of N-Face AlGaN Ultraviolet Light Emitting Diodes[J]. Chin. Phys. Lett., 2014, 31(10): 068701
[14] TONG Jin-Hui, ZHAO Bi-Jun, REN Zhi-Wei, WANG Xing-Fu, CHEN Xin, LI Shu-Ti . InGaN-Based Blue Light Emitting Diodes with AlInN-GaN-AlInN Electron Blocking Layers[J]. Chin. Phys. Lett., 2013, 30(5): 068701
[15] LUO Da-Feng, CHEN Cui-Ping, PENG Ju. The Efficiency Improvement of Blue InGaN Multiple Quantum-Well Light-Emitting Diodes with AlGaN/InGaN Superlattice Barriers[J]. Chin. Phys. Lett., 2013, 30(3): 068701
Viewed
Full text


Abstract