Chin. Phys. Lett.  2015, Vol. 32 Issue (06): 068503    DOI: 10.1088/0256-307X/32/6/068503
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
A Strategy for Magnifying Vibration in High-Energy Orbits of a Bistable Oscillator at Low Excitation Levels
WANG Guang-Qing1**, LIAO Wei-Hsin2
1School of Information and Electronic Engineering, Zhejiang Gongshang University, Hangzhou 310018
2Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong 999077
Cite this article:   
WANG Guang-Qing, LIAO Wei-Hsin 2015 Chin. Phys. Lett. 32 068503
Download: PDF(1081KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract This work focuses on how to maintain a high-energy orbit motion of a bistable oscillator when subjected to a low level excitation. An elastic magnifier (EM) positioned between the base and the bistable oscillator is used to magnify the base vibration displacement to significantly enhance the output characteristics of the bistable oscillator. The dimensionless electromechanical equations of the bistable oscillator with an EM are derived, and the effects of the mass and stiffness ratios between the EM and the bistable oscillator on the output displacement are studied. It is shown that the jump phenomenon occurs at a lower excitation level with increasing the mass and stiffness ratios. With the comparison of the displacement trajectories and the phase portraits obtained from experiments, it is validated that the bistable oscillator with an EM can effectively oscillate in a high-energy orbit and can generate a superior output vibration at a low excitation level as compared with the bistable oscillator without an EM.
Received: 16 December 2014      Published: 30 June 2015
PACS:  85.50.-n (Dielectric, ferroelectric, and piezoelectric devices)  
  82.47.Wx (Electrochemical engineering)  
  89.20.Kk (Engineering)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/6/068503       OR      https://cpl.iphy.ac.cn/Y2015/V32/I06/068503
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Guang-Qing
LIAO Wei-Hsin
[1] Harne R L and Wang K W 2013 Smart Mater. Struct. 22 023001
[2] Zhu D, Tuddor M J and Beeby S P 2010 Meas. Sci. Technol. 21 022001
[3] Kenfack A and Singh K P 2010 Phys. Rev. B 82 046224
[4] Mann B P and Owens B A 2010 J. Sound Vib. 329 1215
[5] Stanton S C, Owens B A M and Mann B P 2012 J. Sound Vib. 331 3617
[6] Tang L, Yang Y and Soh C K 2010 J. Intell. Mater. Syst. Struct. 21 1867
[7] Masuda A and Senda A 2012 Active Passive Smart Struct. Integrated Syst. 8341 83411B
[8] Sebald G E T, Kuwano H and Guyomar D 2011 Smart Mater. Struct. 20 075022
[9] Erturk A, Hoffman J and Inman D J 2009 Appl. Phys. Lett. 94 254102
[10] Erturk A and Inman D J 2011 J. Sound Vib. 330 2339
[11] Wang H Y, Shan X B and Xie T 2012 J. Zhejiang University-Sci. A. 13 526
[12] Aldraihe O and Baz A 2011 J. Intell. Mater. Syst. Struct. 22 521
[13] Rafa M, Akl W and Aladwani A 2011 Active Passive Smart Struct. Integrated Syst. 7977 79770Q
Related articles from Frontiers Journals
[1] Yang-Jun Ou, Jie Sun, Yi-Ming Li, and An-Quan Jiang. A Ferroelectric Domain-Wall Transistor[J]. Chin. Phys. Lett., 2023, 40(3): 068503
[2] JIA Ze, XU Jian-Long, WU Xiao, ZHANG Ming-Ming, LIOU Juin-J.. A Back-Gated Ferroelectric Field-Effect Transistor with an Al-Doped Zinc Oxide Channel[J]. Chin. Phys. Lett., 2015, 32(02): 068503
[3] WANG Yu-Peng, WANG Yong-Ping, SHI Li-Bin. Impact of Arsenic Related Defects on Electronic Performance of ZrO2/GaAs: Density Functional Theory Calculations[J]. Chin. Phys. Lett., 2015, 32(01): 068503
[4] XIONG Juan, GUO Peng, SUN Xi-Liang, WANG Sheng-Fu, HU Ming-Zhe, GU Hao-Shuang. Sensing Characteristics of Shear-Mode AlN Solidly Mounted Resonators with a Silicone Microfluidic System in Viscous Media[J]. Chin. Phys. Lett., 2014, 31(2): 068503
[5] ZHANG Cang-Hai, YANG Yi, ZHOU Chang-Jian, SHU Yi, TIAN He, WANG Zhe, XUE Qing-Tang, REN Tian-Ling . Wafer-Scale Flexible Surface Acoustic Wave Devices Based on an AlN/Si Structure[J]. Chin. Phys. Lett., 2013, 30(7): 068503
[6] LI Ru-Guan, JIANG Shu-Wen, GAO Li-Bin, LI Yan-Rong. A Distributed Phase Shifter Using Bi1.5Zn1.0Nb1.5O7/Ba0.5Sr0.5TiO3 Thin Films[J]. Chin. Phys. Lett., 2013, 30(7): 068503
[7] LUO Bing-Cheng, CHEN Chang-Le**, FAN Fei, JIN Ke-Xin. The Photovoltaic Properties of BiFeO3La0.7Sr0.3MnO3 Heterostructures[J]. Chin. Phys. Lett., 2012, 29(1): 068503
[8] CHEN Jun, FAN Guang-Han**, PANG-Wei, ZHENG Shu-Wen . Comparison of GaN-Based Light-Emitting Diodes by Using the AlGaN Electron-Blocking Layer and InAlN Electron-Blocking Layer[J]. Chin. Phys. Lett., 2011, 28(12): 068503
[9] JIA Ze**, WANG Lin-Kai, REN Tian-Ling. Influences of Interface States on Resistive Switching Properties of TiOx with Different Electrodes[J]. Chin. Phys. Lett., 2010, 27(11): 068503
[10] GONG Yue-Feng, SONG Zhi-Tang, LING Yun, LIU Yan, LI Yi-Jin, FENG Song-Lin. Three-Dimensional Finite Element Simulations for the Thermal Characteristics of PCRAMs with Different Buffer Layer Materials[J]. Chin. Phys. Lett., 2010, 27(8): 068503
[11] GONG Yue-Feng, SONG Zhi-Tang, LING Yun, LIU Yan, LI Yi-Jin. Simulation of Voltage SET Operation in Phase-Change Random Access Memories with Heater Addition and Ring-Type Contactor for Low-Power Consumption by Finite Element Modeling[J]. Chin. Phys. Lett., 2010, 27(6): 068503
[12] LIU Hong-Mei, ZHAO Quan-Liang, CAO Mao-Sheng, YUAN Jie, DUAN Zhong-Xia, QIU Cheng-Jun,. Electromechanical Properties of Microcantilever Actuated by Enhanced Piezoelectric PZT Thick Film[J]. Chin. Phys. Lett., 2008, 25(11): 068503
[13] WANG Long-Hai, DAI Ying, DENG Zhao. Etch Damage Evaluation in Integrated Ferroelectric Capacitor Side Wall by Piezoresponse Force Microscopy[J]. Chin. Phys. Lett., 2008, 25(9): 068503
[14] WEN Xin-Yi, YU Jun, WANG Yun-Bo, ZHOU Wen-Li, GAO Jun-Xiong, CHU Xiao-Hui. Preparation and Characterization of BPO Film as Electrode for Using of FeRAM[J]. Chin. Phys. Lett., 2008, 25(7): 068503
[15] ZHANG Yan-Jun, FEI Jin-Wen, TANG Ting-Ao, JIANG An-Quan. Artificial Modulation of Ferroelectric Thin Films into Antiferroelectric through H+ Implantation for High-Density Charge Storage[J]. Chin. Phys. Lett., 2008, 25(5): 068503
Viewed
Full text


Abstract