Chin. Phys. Lett.  2015, Vol. 32 Issue (06): 068502    DOI: 10.1088/0256-307X/32/6/068502
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
The Cu Based AlGaN/GaN Schottky Barrier Diode
LI Di1**, JIA Li-Fang1, FAN Zhong-Chao1, CHENG Zhe2, WANG Xiao-Dong1, YANG Fu-Hua1, HE Zhi1
1Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
2Semiconductor Lighting R&D Center, Chinese Academy of Sciences, Beijing 100083
Cite this article:   
LI Di, JIA Li-Fang, FAN Zhong-Chao et al  2015 Chin. Phys. Lett. 32 068502
Download: PDF(734KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The electrical characteristics of Cu and Ni/Al AlGaN/GaN Schottky barrier diodes on Si substrates are compared. The onset voltage of Cu Schottky diodes is about 0.4 V less than the Ni/Al contact. For the Cu/Ni Schottky contact, the leakage current is 4.7×10?7 A/mm at ?10 V. After annealing, the leakage current is decreased to 3.7×10?7 A/mm for 400°C or 4.6×10?8 A/mm for 500°C, respectively. The electrical property is affected by the thickness ratio of Cu to Ni. The Cu/Ni for 80/20 nm shows a low onset voltage, while the Cu/Ni for 20/80 nm shows a low leakage current. Both breakdown voltages are above 720 V.
Received: 30 December 2014      Published: 30 June 2015
PACS:  85.40.Ls (Metallization, contacts, interconnects; device isolation)  
  73.30.+y (Surface double layers, Schottky barriers, and work functions)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.35.Be (Quantum well devices (quantum dots, quantum wires, etc.))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/6/068502       OR      https://cpl.iphy.ac.cn/Y2015/V32/I06/068502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Di
JIA Li-Fang
FAN Zhong-Chao
CHENG Zhe
WANG Xiao-Dong
YANG Fu-Hua
HE Zhi
[1] Hu J, Lenci S and Stoffels S 2014 Phys. Status Solidi C 11 862
[2] Donkers J, Heil S and Hurkx G 2013 CS MANTECH Conference (New Orleans, Louisiana, 13–16 May 2013) p 259
[3] Yan D W, Jiao J P and Ren J 2013 J. Appl. Phys. 114 144511
[4] Lian Y W, Lin Y S and Yang J M 2013 IEEE Electron Device Lett. 34 981
[5] Esposto M, Lecce V D and Bonaiuti M 2013 J. Electron. Mater. 42 15
[6] Schmitz A C, Ping A T and Khan M A 1998 J. Electron. Mater. 27 255
[7] Werner J H and Gutter H H 1991 J. Appl. Phys. 69 1522
Related articles from Frontiers Journals
[1] ZHONG Xiao-Feng, LIU Fu-Sheng, CAI Ling-Cang, XI Feng, ZHANG Ming-Jian, LIU Qi-Jun, WANG Ya-Ping, HAO Bin-Bin. Electrical Resistivity of Silane Multiply Shock-Compressed to 106 GPa[J]. Chin. Phys. Lett., 2014, 31(12): 068502
[2] DU Yan-Dong, HAN Wei-Hua, YAN Wei, YANG Fu-Hua. Impact of CHF3 Plasma Treatment on AlGaN/GaN HEMTs Identified by Low-Temperature Measurement[J]. Chin. Phys. Lett., 2014, 31(04): 068502
[3] WANG Ying, SONG Zhong-Xiao, ZHANG Mi-Lin. Performance Improved by Incorporating of Ru Atoms into Zr-Si Diffusion Barrier for Cu Metallization[J]. Chin. Phys. Lett., 2012, 29(9): 068502
[4] XIAO Xia, SHAN Xing-Meng, LIU Ya-Liang. Evaluating of Adhesion Property of ULSI Interconnect Films by the Surface Acoustic Waves[J]. Chin. Phys. Lett., 2010, 27(1): 068502
[5] ZHOU Mi, CHEN Tao, TAN Jing-Jing, RU Guo-Ping, JIANG Yu-Long, LIU Ran, QU Xin-Ping. Effect of Pretreatment of TaN Substrates on Atomic Layer Deposition Growth of Ru Thin Films[J]. Chin. Phys. Lett., 2007, 24(5): 068502
Viewed
Full text


Abstract