Chin. Phys. Lett.  2015, Vol. 32 Issue (06): 060501    DOI: 10.1088/0256-307X/32/6/060501
GENERAL |
The Effect of Quantum Coins on the Spreading of Binary Disordered Quantum Walk
ZHAO Jing1, HU Ya-Yun1, TONG Pei-Qing1,2,3**
1Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nanjing 210023
2Jiangsu Key Laboratory for Numerical Simulation of Large Scale Complex Systems, Nanjing Normal University, Nanjing 210023
3Kavli Institute for Theoretical Physics China, Chinese Academy of Sciences, Beijing 100190
Cite this article:   
ZHAO Jing, HU Ya-Yun, TONG Pei-Qing 2015 Chin. Phys. Lett. 32 060501
Download: PDF(882KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The dynamical and static disordered quantum walks were extensively studied recently. It is found that, for the dynamical disorder case, the transport behavior of particles is diffusive, and for the static disorder case the transport behavior is localized. In this work, we study the effect of quantum coins on the transport behaviors of the binary disordered quantum walks. We find that once the coins satisfy certain conditions, the sub-ballistic spreading could be found in binary dynamical disorder quantum walks, and the sub-ballistic, diffusive and sub-diffusive spreadings could be found in binary static disorder quantum walks. We obtain the necessary conditions for those abnormal diffusive behaviors.
Received: 20 January 2015      Published: 30 June 2015
PACS:  05.30.-d (Quantum statistical mechanics)  
  05.40.Fb (Random walks and Levy flights)  
  03.67.Lx (Quantum computation architectures and implementations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/6/060501       OR      https://cpl.iphy.ac.cn/Y2015/V32/I06/060501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHAO Jing
HU Ya-Yun
TONG Pei-Qing
[1] Aharonov Y et al 1993 Phys. Rev. A 48 1687
[2] Farhi E and Gutmann S 1998 Phys. Rev. A 58 915
[3] Shenvi N et al 2003 Phys. Rev. A 67 052307
[4] Ambainis A 2007 SIAM J. Comput. 37 210
[5] Childs A M and Goldstone J 2004 Phys. Rev. A 70 022314
[6] Chandrashekar C M and Laflamme R 2008 Phys. Rev. A 78 022314
[7] Oka T et al 2005 Phys. Rev. Lett. 94 100602
[8] Kitagawa T et al 2010 Phys. Rev. A 82 033429
[9] Li M et al 2013 Chin. Phys. Lett. 30 020304
[10] Dur W et al 2002 Phys. Rev. A 66 052319
[11] Du J et al 2003 Phys. Rev. A 67 042316
[12] Ryan C A et al 2005 Phys. Rev. A 72 062317
[13] Zahringer F et al 2010 Phys. Rev. Lett. 104 100503
[14] Xue P et al 2009 Phys. Rev. Lett. 103 183602
[15] Karski K et al 2009 Science 325 174
[16] Broome M A, Fedrizzi A, Lanyon B P, Kassal I, Aspuru-Guzik A and White A G 2010 Phys. Rev. Lett. 104 153602
[17] Brun T A, Carteret H A and Ambainis A 2003 Phys. Rev. Lett. 91 130602
[18] Segawa E and Konno N 2008 Int. J. Quantum Inf. Process. 6 1231
[19] Joye A and Merkli M 2010 J. Stat. Phys. 140 1025
[20] Xu X P and Liu F 2008 Phys. Rev. A 77 062318
[21] Konno N 2010 Quantum Inf. Process. 9 405
[22] Ahlbrecht A, Scholz V B and Werner A H 2011 J. Math. Phys. 52 102201
[23] Zhang R, Qin H, Tang B and Xue P 2013 Chin. Phys. B 22 110312
[24] Zhang R, Xu Y Q and Xue P 2015 Chin. Phys. B 24 010303
[25] Romanelli A 2007 Phys. Rev. A 76 054306
[26] Romanelli A, Siri R and Micenmacher V 2007 Phys. Rev. E 76 037202
[27] Vieira R, Amorim E P M and Rigolin G 2013 Phys. Rev. Lett. 111 180503
Related articles from Frontiers Journals
[1] Zi-Gang Yuan, Xin-Yu Zhang, He Zhao, Yan-Chao Li. Energy Variance in Decoherence[J]. Chin. Phys. Lett., 2020, 37(3): 060501
[2] Junjun Xu, Yanxing Li. Eigenstate Distribution Fluctuation of a Quenched Disordered Bose–Hubbard System in Thermal-to-Localized Transitions[J]. Chin. Phys. Lett., 2019, 36(2): 060501
[3] Rong-Qiang He, Zhong-Yi Lu. Interaction-Induced Characteristic Length in Strongly Many-Body Localized Systems[J]. Chin. Phys. Lett., 2018, 35(2): 060501
[4] LAI Meng-Yun, XIAO Duan-Liang, PAN Xiao-Yin. The Harmonic Potential Theorem for a Quantum System with Time-Dependent Effective Mass[J]. Chin. Phys. Lett., 2015, 32(11): 060501
[5] GAN Shu, HE Xing-Dao, LIU Bin, FENG Cui-Di. Effect of Quantum Coins on Two-Particle Quantum Walks[J]. Chin. Phys. Lett., 2015, 32(08): 060501
[6] YANG Ge, CHEN Bin. Villain Transformation for Ferrimagnetic Spin Chain[J]. Chin. Phys. Lett., 2014, 31(06): 060501
[7] LI Cong, ZHANG Yan-Chao, HE Ji-Zhou. A Nanosize Quantum-Dot Photoelectric Refrigerator[J]. Chin. Phys. Lett., 2013, 30(10): 060501
[8] LI Min, ZHANG Yong-Sheng, GUO Gunag-Can. Quantum Random Walk in Periodic Potential on a Line[J]. Chin. Phys. Lett., 2013, 30(2): 060501
[9] TAO Yong*,CHEN Xun. Statistical Physics of Economic Systems: a Survey for Open Economies[J]. Chin. Phys. Lett., 2012, 29(5): 060501
[10] WANG Ji-Suo, **, MENG Xiang-Guo, FAN Hong-Yi . A Family of Generalized Wigner Operators and Their Physical Meaning as Bivariate Normal Distribution[J]. Chin. Phys. Lett., 2011, 28(10): 060501
[11] HENG Tai-Hua, LIN Bing-Sheng, JING Si-Cong. Wigner Functions for the Bateman System on Noncommutative Phase Space[J]. Chin. Phys. Lett., 2010, 27(9): 060501
[12] ZHU Ren-Gui, WANG An-Min. Statistical Interaction Term of One-Dimensional Anyon Models[J]. Chin. Phys. Lett., 2010, 27(4): 060501
[13] HU Li-Yun, FAN Hong-Yi. Generalized Positive-Definite Operator in Quantum Phase Space Obtained by Virtue of the Weyl Quantization Rule[J]. Chin. Phys. Lett., 2009, 26(6): 060501
[14] ZHU Jing-Min. Quantum Phase Transitions in Matrix Product States[J]. Chin. Phys. Lett., 2008, 25(10): 060501
[15] HENG Tai-Hua, LIN Bing-Sheng, JING Si-Cong. Wigner Functions for Non-Hamiltonian Systems on Noncommutative Space[J]. Chin. Phys. Lett., 2008, 25(10): 060501
Viewed
Full text


Abstract