Chin. Phys. Lett.  2015, Vol. 32 Issue (06): 065202    DOI: 10.1088/0256-307X/32/6/065202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Negative Refraction in a Lossy Plasma Layer
PENG Li, GUO Bin**, GAO Ming-Xiang, CAI Xin
School of Science, Wuhan University of Technology, Wuhan 430070
Cite this article:   
PENG Li, GUO Bin, GAO Ming-Xiang et al  2015 Chin. Phys. Lett. 32 065202
Download: PDF(539KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Negative refraction at the interface between air and a lossy plasma layer is theoretically analyzed based on the inhomogeneous wave theory. The phenomenon of negative refraction, which arises from the negative refraction angle, can occur when a transverse magnetic wave is incident from air to the lossy plasma layer under certain conditions. The formula of the negative refraction angle is derived, and the dependences of the negative refraction angle on the angle of incidence, frequency of incidence, and lossy plasma layer are analytically investigated. The parameter dependences of the effects are calculated and discussed.
Received: 01 December 2014      Published: 30 June 2015
PACS:  52.35.Hr (Electromagnetic waves (e.g., electron-cyclotron, Whistler, Bernstein, upper hybrid, lower hybrid))  
  52.40.Db (Electromagnetic (nonlaser) radiation interactions with plasma)  
  42.25.Bs (Wave propagation, transmission and absorption)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/6/065202       OR      https://cpl.iphy.ac.cn/Y2015/V32/I06/065202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
PENG Li
GUO Bin
GAO Ming-Xiang
CAI Xin
[1] Ginzberg V L 1970 The Propagation of Electromagnetic Waves in Plasmas (New York: Pergammon)
[2] Heald M A and Wharton C B 1978 Plasma Diagnostics with Microwaves (New York: Krieger)
[3] Guo B and Wang X G 2005 Phys. Plasmas 12 084506
[4] Liu M H et al 2001 Chin. Phys. Lett. 18 1225
[5] Xi Y B and Liu Y 2012 Phys. Plasmas 19 073301
[6] Tang D L et al 2003 IEEE Trans. Plasma Sci. 31 405
[7] Zhang S et al 2006 Phys. Plasmas 13 013502
[8] Ivko S et al 2011 Phys. Rev. E 84 016407
[9] Keidar M, Kim M and Boyd I D 2008 J. Spacecr. Rockets 45 445
[10] Vidmar R J 1990 IEEE Trans. Plasma Sci. 18 733
[11] Laroussi M and Roth J R 1993 Int. J. Infrared Millimeter Waves 14 1601
[12] Shi J et al 1995 Int. J. Infrared Millimeter Waves 16 1927
[13] Hojo H and Mase A 2004 J. Plasma Fusion Res. 80 89
[14] Sakai O et al 2005 Appl. Phys. Lett. 87 241505
[15] Guo B 2009 Plasma Sci. Technol. 11 18
[16] Guo B 2009 Phys. Plasmas 16 043508
[17] Hamidi S M 2012 Phys. Plasmas 19 012503
[18] Fang W L and Dong L F 2010 Phys. Plasmas 17 073506
[19] Qi L M et al 2010 Phys. Plasmas 17 042501
[20] Guo B et al 2012 Phys. Plasmas 19 044505
[21] Guo B et al 2012 Phys. Plasmas 19 072111
[22] Zhang H F et al 2013 Phys. Plasmas 20 042110
[23] Guo B, Peng L and Qiu X M 2013 Plasma Sci. Technol. 15 609
[24] Sakai O and Tachibana K 2012 Plasma Sources Sci. Technol. 21 013001
[25] Guo B 2012 J. Electromagn. Waves Appl. 26 2445
[26] Guo B 2013 Chin. Phys. Lett. 30 105201
[27] Veselago V G 1968 Sov. Phys. Usp 10 509
[28] Smith D R et al 2004 Science 305 788
[29] Shelby R A, Smith D R and Schultz S 2001 Science 292 77
[30] Schilling J 2006 Phys. Rev. E 74 046618
[31] Chern R J 2013 J. Phys. D: Appl. Phys. 46 125307
[32] Anthony J H, Leonid A, Scott S H, Kale J F, Dan W, Viktor A P, Evgenii E N, Deborah L S and Claire G 2007 Nat. Mater. 6 946
[33] Guo B 2013 Phys. Plasmas 20 074504
[34] Parimi P V, Lu W T, Vodo P, Sokolo J, Derov J S and Sridhar S 2004 Phys. Rev. Lett. 92 127401
[35] Jesus E J, Rafael D and F Jocelyn 2011 PLoS One 6 e17188
[36] Cubucku E, Aydin K, Ozbay E, Foteinopoulou S and Soukoulis C M 2003 Nature 423 604
[37] Guo B 2013 Phys. Plasmas 20 093506
[38] Parazzoli C G, Greegor R B, Li K, Koltenbah B E C and M Tanielian 2003 Phys. Rev. Lett. 90 107401
[39] Stockman M 2007 Phys. Rev. Lett. 98 177404
[40] Kinsler P 2009 Phys. Rev. A 79 023839
[41] Markel V A 2008 Opt. Express 16 19152
[42] Zhang F, Feng S M and Shan Y H 2014 Optik 125 338
[43] Garcia-Pomar J L and Nieto-Vesperinas M 2004 Opt. Express 12 2081
Related articles from Frontiers Journals
[1] Chun-Hua Li, Shao-Wei Wang, Yun-Hao Liu, Zhen-Wei Xia, Xiao-Hui Zhang, Dan-Dan Zou. Extraordinary Electromagnetic Waves in Weakly Relativistic Degenerate Spin-1/2 Magnetized Quantum Plasmas[J]. Chin. Phys. Lett., 2018, 35(4): 065202
[2] SUN Xin-Feng, JIANG Zhong-He, XU Tao, HU Xi-Wei, ZHUANG Ge, WANG Lu, WANG Xiao-Hong. Absolute and Convective Instabilities of Two-Plasmon Decay in an Inhomogeneous Magnetized Plasma[J]. Chin. Phys. Lett., 2015, 32(12): 065202
[3] LIANG Hui-Min, WANG Jing-Quan, WANG Xue, WANG Gui-Mei. Surface Plasmon Interference Lithography Assisted by a Fabry–Perot Cavity Composed of Subwavelength Metal Grating and Thin Metal Film[J]. Chin. Phys. Lett., 2015, 32(10): 065202
[4] ZHANG Xin-Yuan, WANG Lu-Lu, CHEN Zhao, CUI Lu-Na, SHANG Ce, ZHAO Yu-Fang, DUAN Gao-Yan, LIU Jian-Bin, YU Li. The Line Shape of Double-Sided Tooth-Disk Waveguide Filters Based on Plasmon-Induced Transparency[J]. Chin. Phys. Lett., 2015, 32(5): 065202
[5] LI Xin-Xia, XIANG Nong, GAN Chun-Yun. Effect of Wave Accessibility on Lower Hybrid Wave Current Drive in Experimental Advanced Superconductor Tokamak with H-Mode Operation[J]. Chin. Phys. Lett., 2015, 32(03): 065202
[6] GUO Bin. Faraday Effect on Negative Refraction in Uniaxial Anisotropic Plasma Metamaterials[J]. Chin. Phys. Lett., 2013, 30(10): 065202
[7] CHEN Shao-Yong, TANG Chang-Jian, ZHANG Xin-Jun. Synergy Current Driven by Combined Lower Hybrid Wave and Different Polarized Electron Cyclotron Wave in Tokamak Plasma[J]. Chin. Phys. Lett., 2013, 30(6): 065202
[8] ZHU Hui, SU Zhen-Peng, ZHENG Hui-Nan. Counter-Streaming Interaction between Fast Magnetosonic Wave and Radiation Belt Electrons[J]. Chin. Phys. Lett., 2013, 30(5): 065202
[9] ZHU Hui, SU Zhen-Peng, ZHENG Hui-Nan. Normal-Angle Dependence of the Interaction between Radiation Belt Electrons and Fast Magnetosonic Waves[J]. Chin. Phys. Lett., 2012, 29(10): 065202
[10] DUAN Wen-Xue, MA Zhi-Wei, and WU Bin. Combining Effects between LHW and IBW Injections on EAST[J]. Chin. Phys. Lett., 2012, 29(8): 065202
[11] LUAN Qi-Bin, SHI Yi-Peng, and WANG Xiao-Gang. Mode Conversion and Whistler Wave Generation on an Alfvén Resonance Layer in High Beta Plasmas[J]. Chin. Phys. Lett., 2012, 29(8): 065202
[12] XIAO Fu-Liang, **, HE Zhao-Guo ZHANG Sai, SU Zhen-Peng, CHEN Liang-Xu, . Diffusion Simulation of Outer Radiation Belt Electron Dynamics Induced by Superluminous L-O Mode Waves[J]. Chin. Phys. Lett., 2011, 28(3): 065202
[13] GUO Jun, **, YU Bin, GUO Guang-Hai, ZHAO Bo . Electron Whistler Mode Waves Associated with Collisionless Magnetic Reconnection[J]. Chin. Phys. Lett., 2011, 28(2): 065202
[14] LIANG Hui-Min**, WANG Jing-Quan . Simulation of Interference Nanolithography of Second-Exciting Surface-Plasmon Polartions for Metal Nanograting Fabrication[J]. Chin. Phys. Lett., 2011, 28(1): 065202
[15] ZHANG Sai, XIAO Fu-Liang** . Chorus-Driven Outer Radiation Belt Electron Dynamics at Different L-Shells[J]. Chin. Phys. Lett., 2010, 27(12): 065202
Viewed
Full text


Abstract