CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Set Programming Method and Performance Improvement of Phase Change Random Access Memory Arrays |
FAN Xi1,2,3, CHEN Hou-Peng1,2**, WANG Qian1,2, WANG Yue-Qing1,2,3, LV Shi-Long1,2, LIU Yan1,2, SONG Zhi-Tang1,2, FENG Gao-Ming4, LIU Bo1,2 |
1State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Micro-system and Information Technology, Chinese Academy of Sciences, Shanghai 200050 2Shanghai Key Laboratory of Nanofabrication Technology for Memory, Shanghai Institute of Micro-system and Information Technology, Chinese Academy of Sciences, Shanghai 200050 3University of Chinese Academy of Sciences, Beijing 100049 4United Laboratory, Semiconductor Manufacturing International Corporation, Shanghai 201203
|
|
Cite this article: |
FAN Xi, CHEN Hou-Peng, WANG Qian et al 2015 Chin. Phys. Lett. 32 068301 |
|
|
Abstract A novel slow-down set waveform is proposed to improve the set performance and a 1 kb phase change random access memory chip fabricated with a 130 nm CMOS technology is implemented to investigate the set performance by different set programming strategies based on this new set pulse. The amplitude difference (I1?I2) of the set pulse is proved to be a crucial parameter for set programming. We observe and analyze the cell characteristics with different I1?I2 by means of thermal simulations and high-resolution transmission electron microscopy, which reveal that an incomplete set programming will occur when the proposed slow-down pulse is set with an improperly high I1?I2. This will lead to an amorphous residue in the active region. We also discuss the programming method to avoid the set performance degradations.
|
|
Received: 21 October 2014
Published: 30 June 2015
|
|
PACS: |
83.10.Tv
|
(Structural and phase changes)
|
|
85.30.-z
|
(Semiconductor devices)
|
|
85.35.-p
|
(Nanoelectronic devices)
|
|
85.40.-e
|
(Microelectronics: LSI, VLSI, ULSI; integrated circuit fabrication technology)
|
|
81.07.-b
|
(Nanoscale materials and structures: fabrication and characterization)
|
|
|
|
|
[1] Philipp J B, Ruf B, Ruster C, Andres D, Majewski P, Kund M, Happ T D and Bergmann R 2008 Proc. -Annu. Non-Volatile Mem. Technol. Symp. NVMTS p 1 [2] Kang D H, Lee J H, Kong J H, Ha D, Yu J, Um C Y, Park J H, Yeung F, Kim J H, Park W I, Jeon Y J, Lee M K, Park J H, Song Y J, Oh J H and Jeong H S 2008 Dig Tech. Pap. Symp. VLSI Technol. p 98 [3] Chen Y, Song Z, Chen X, Liu B, Xu C, Feng G, Wang L, Zhong M and Feng S 2010 Chin. Phys. Lett. 27 107302 [4] Bedeschi F, Boffmo C, Bonizzoni E, Resta C, Torelli G and Zella D 2006 Proc. IEEE Int. Symp. Circuits Syst. p 967 [5] Bedeschi F Bonizzoni E, Casagrande G, Gastaldi R, Resta C, Torelli G and Zella D 2005 IEEE international symposium on circuits and systems (Kobe, Japan) p 1270 [6] Oh H R, Cho B H, Cho W Y, Kang S, Choi B, Kim H J, Kim K S, Kim D E, Kwak C K, Byun H G, Jeong G T, Jeong H S and Kim K 2006 IEEE J. Solid-State Circuits 41 122 [7] Xu L, Chen X, Song Z, Chen Y, Liu B, Chen H, Yang Z, Wu G, Cai D, Feng G and Li Y 2013 Jpn. J. Appl. Phys. 52 014101 [8] Cai D, Chen H, Wang Q, Chen Y, Song Z, Wu G and Feng S 2012 IEEE Electron Device Lett. 33 1270 [9] Gong Y, Song Z, Ling Y, Liu Y and Feng S 2009 Chin. Phys. Lett. 26 118101 [10] Gong Y, Ling Y, Song Z and Feng S 2009 Jpn. J. Appl. Phys. 48 064505 [11] Feiedrich I, Weidenhof, Njoroge W, Franz P and Wuttig M 2000 J. Appl. Phys. 87 4130 [12] Faraclas A, Williams N, Gokirmak A and Silva H2011 IEEE Electron Device Lett. 32 1737 [13] Fillot F, Loubriat S, Gergaud P and Maitrejean S 2011 Electrochem. Solid-State Lett. 14 H285 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|