CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Simulation of Dendritic Growth with Melt Convection in Solidification of Ternary Alloys |
SUN Dong-Ke1**, ZHANG Qing-Yu2, CAO Wei-Sheng3, ZHU Ming-Fang2 |
1Shanghai Key Laboratory of Advanced High-temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 2Jiangsu Key Laboratory for Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189 3CompuTherm LLC, 437 S. Yellowstone Dr., Madison 53719, USA
|
|
Cite this article: |
SUN Dong-Ke, ZHANG Qing-Yu, CAO Wei-Sheng et al 2015 Chin. Phys. Lett. 32 068103 |
|
|
Abstract A cellular automaton-lattice Boltzmann coupled model is extended to study the dendritic growth with melt convection in the solidification of ternary alloys. With a CALPHAD-based phase equilibrium engine, the effects of melt convection, solutal diffusion, interface curvature and preferred growth orientation are incorporated into the coupled model. After model validation, the multi dendritic growth of the Al-4.0 wt%Cu-1.0 wt%Mg alloy is simulated under the conditions of pure diffusion and melt convection. The result shows that the dendritic growth behavior, the final microstructure and microsegregation are significantly influenced by melt convection in the solidification.
|
|
Received: 02 October 2014
Published: 30 June 2015
|
|
PACS: |
81.10.Aj
|
(Theory and models of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)
|
|
81.30.Fb
|
(Solidification)
|
|
47.11.-j
|
(Computational methods in fluid dynamics)
|
|
47.54.-r
|
(Pattern selection; pattern formation)
|
|
|
|
|
[1] Zhu M F and Stefanescu D M 2007 Acta Mater. 55 1741 [2] Zhu M F, Lee S Y and Hong C P 2004 Phys. Rev. E 69 061610 [3] Beckermann C, Diepers H J, Steinbach I, Karma A and Tong X 1999 J. Comput. Phys. 154 468 [4] Li Q, Li D Z and Qian B N 2004 Int. J. Cast Met. Res. 17 339 [5] Qian Y H, d'Humières D and Lallemand P 1992 Europhys. Lett. 17 479 [6] Guo Z L, Shi Y and Zhao T S 2006 Phys. Fluids 18 067107 [7] Guo Z L and Shu C 2013 Lattice Boltzmann Method Its Appl. Eng. (Singapore: World Sci.) chap 1 p 33 [8] Chen F, Xu A, Zhang G, Li Y and Succi S 2010 Europhys. Lett. 90 64003 [9] Xu A G, Zhang G C, Li Y J and Li H 2014 Prog. Phys. 34 54003 [10] Miller W, Rasin I and Pimentel F 2004 J. Cryst. Growth 266 283 [11] Rasin I, Miller W and Succi S 2005 Phys. Rev. E 72 066705 [12] Miller W, Rasin I and Succi S 2006 Physica A 362 78 [13] Medvedev D and Kassner K 2005 Phys. Rev. E 72 056703 [14] Medvedev D and Kassner K 2005 J. Cryst. Growth 275 e1495 [15] Selzer M, Jainta M and Nestler B 2009 Phys. Status Solidi B 246 1197 [16] Ode M, Lee J S, Kim S G, Kim W T and Suzuki T 2000 ISIJ. Int. 40 870 [17] Yan X, Chen S, Xie F and Chiang Y 2002 Acta Mater. 50 2199 [18] Jacot A and Rappaz M 2002 Acta Mater. 50 1909 [19] Zhu M F, Cao W S, Chen S L, Hong C P and Chiang Y A 2007 J. Phase Equilib. Diff. 28 130 [20] Sun D K, Zhu M F, Pan S Y and Raabe D 2009 Acta Mater. 57 1755 [21] Sun D K, Zhu M F, Pan S Y, Yang C R and Raabe D 2011 Comput. Math. Appl. 61 3585 [22] Chen S L, Daniel S, Zhang F, Chiang Y A, Yan X Y, Xie F Y, Schmid-Fetzer R and W A Oates 2002 CALPHAD 26 175 [23] Chen S, Chen H, Martinez D and Matthaeus W H 1991 Phys. Rev. Lett. 67 3776 [24] Deng B, Shi B and Wang G 2005 Chin. Phys. Lett. 22 267 [25] Luo L S 2000 Phys. Rev. E 62 4982 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|