Chin. Phys. Lett.  2015, Vol. 32 Issue (06): 068103    DOI: 10.1088/0256-307X/32/6/068103
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Simulation of Dendritic Growth with Melt Convection in Solidification of Ternary Alloys
SUN Dong-Ke1**, ZHANG Qing-Yu2, CAO Wei-Sheng3, ZHU Ming-Fang2
1Shanghai Key Laboratory of Advanced High-temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240
2Jiangsu Key Laboratory for Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189
3CompuTherm LLC, 437 S. Yellowstone Dr., Madison 53719, USA
Cite this article:   
SUN Dong-Ke, ZHANG Qing-Yu, CAO Wei-Sheng et al  2015 Chin. Phys. Lett. 32 068103
Download: PDF(808KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A cellular automaton-lattice Boltzmann coupled model is extended to study the dendritic growth with melt convection in the solidification of ternary alloys. With a CALPHAD-based phase equilibrium engine, the effects of melt convection, solutal diffusion, interface curvature and preferred growth orientation are incorporated into the coupled model. After model validation, the multi dendritic growth of the Al-4.0 wt%Cu-1.0 wt%Mg alloy is simulated under the conditions of pure diffusion and melt convection. The result shows that the dendritic growth behavior, the final microstructure and microsegregation are significantly influenced by melt convection in the solidification.
Received: 02 October 2014      Published: 30 June 2015
PACS:  81.10.Aj (Theory and models of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
  81.30.Fb (Solidification)  
  47.11.-j (Computational methods in fluid dynamics)  
  47.54.-r (Pattern selection; pattern formation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/6/068103       OR      https://cpl.iphy.ac.cn/Y2015/V32/I06/068103
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SUN Dong-Ke
ZHANG Qing-Yu
CAO Wei-Sheng
ZHU Ming-Fang
[1] Zhu M F and Stefanescu D M 2007 Acta Mater. 55 1741
[2] Zhu M F, Lee S Y and Hong C P 2004 Phys. Rev. E 69 061610
[3] Beckermann C, Diepers H J, Steinbach I, Karma A and Tong X 1999 J. Comput. Phys. 154 468
[4] Li Q, Li D Z and Qian B N 2004 Int. J. Cast Met. Res. 17 339
[5] Qian Y H, d'Humières D and Lallemand P 1992 Europhys. Lett. 17 479
[6] Guo Z L, Shi Y and Zhao T S 2006 Phys. Fluids 18 067107
[7] Guo Z L and Shu C 2013 Lattice Boltzmann Method Its Appl. Eng. (Singapore: World Sci.) chap 1 p 33
[8] Chen F, Xu A, Zhang G, Li Y and Succi S 2010 Europhys. Lett. 90 64003
[9] Xu A G, Zhang G C, Li Y J and Li H 2014 Prog. Phys. 34 54003
[10] Miller W, Rasin I and Pimentel F 2004 J. Cryst. Growth 266 283
[11] Rasin I, Miller W and Succi S 2005 Phys. Rev. E 72 066705
[12] Miller W, Rasin I and Succi S 2006 Physica A 362 78
[13] Medvedev D and Kassner K 2005 Phys. Rev. E 72 056703
[14] Medvedev D and Kassner K 2005 J. Cryst. Growth 275 e1495
[15] Selzer M, Jainta M and Nestler B 2009 Phys. Status Solidi B 246 1197
[16] Ode M, Lee J S, Kim S G, Kim W T and Suzuki T 2000 ISIJ. Int. 40 870
[17] Yan X, Chen S, Xie F and Chiang Y 2002 Acta Mater. 50 2199
[18] Jacot A and Rappaz M 2002 Acta Mater. 50 1909
[19] Zhu M F, Cao W S, Chen S L, Hong C P and Chiang Y A 2007 J. Phase Equilib. Diff. 28 130
[20] Sun D K, Zhu M F, Pan S Y and Raabe D 2009 Acta Mater. 57 1755
[21] Sun D K, Zhu M F, Pan S Y, Yang C R and Raabe D 2011 Comput. Math. Appl. 61 3585
[22] Chen S L, Daniel S, Zhang F, Chiang Y A, Yan X Y, Xie F Y, Schmid-Fetzer R and W A Oates 2002 CALPHAD 26 175
[23] Chen S, Chen H, Martinez D and Matthaeus W H 1991 Phys. Rev. Lett. 67 3776
[24] Deng B, Shi B and Wang G 2005 Chin. Phys. Lett. 22 267
[25] Luo L S 2000 Phys. Rev. E 62 4982
Related articles from Frontiers Journals
[1] Lu Li, Zhi-Long Bao, Xun-Heng Ye, Jia-Wei Shen, Bo Yang, Gao-Xiang Ye, Xiang-Ming Tao. Nucleation, Growth, and Aggregation of Au Nanocrystals on Liquid Surfaces[J]. Chin. Phys. Lett., 2020, 37(2): 068103
[2] Tong Zhou, Xie-Gang Zhu, Mingyu Tong, Yun Zhang, Xue-Bing Luo, Xiangnan Xie, Wei Feng, Qiuyun Chen, Shiyong Tan, Zhen-Yu Wang, Tian Jiang, Yuhua Tang, Xin-Chun Lai, Xuejun Yang. Experimental Evidence of Topological Surface States in Mg$_{3}$Bi$_{2}$ Films Grown by Molecular Beam Epitaxy[J]. Chin. Phys. Lett., 2019, 36(11): 068103
[3] Tao HU, Meng-Dan HU, Si-si Zhou, Dong-Ke SUN. An Immersed Boundary-Lattice Boltzmann Prediction for Particle Hydrodynamic Focusing in Annular Microchannels[J]. Chin. Phys. Lett., 2018, 35(10): 068103
[4] Ying Zhao, Sheng-Rui Xu, Zhi-Yu Lin, Jin-Cheng Zhang, Teng Jiang, Meng-Di Fu, Jia-Duo Zhu, Qin Lu, Yue Hao. C-Implanted N-Polar GaN Films Grown by Metal Organic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2016, 33(12): 068103
[5] Na Yan, Liang Hu, Ying Ruan, Wei-Li Wang, Bing-Bo Wei. Liquid State Undercoolability and Crystal Growth Kinetics of Ternary Ni-Cu-Sn Alloys[J]. Chin. Phys. Lett., 2016, 33(10): 068103
[6] Sheng-Rui Xu, Ying Zhao, Teng Jiang, Jin-Cheng Zhang, Pei-Xian Li, Yue Hao. Improved Semipolar (11$\bar{2}$2) GaN Quality Grown on $m$-Plane Sapphire Substrates by Metal Organic Chemical Vapor Deposition Using Self-Organized SiN$_{x}$ Interlayer[J]. Chin. Phys. Lett., 2016, 33(06): 068103
[7] JIANG Ren-Yuan, XU Sheng-Rui, ZHANG Jin-Cheng, JIANG Teng, JIANG Hai-Qing, WANG Zhi-Zhe, FAN Yong-Xiang, HAO Yue. Morphological and Microstructural Evolution and Related Impurity Incorporation in Non-Polar a-Plane GaN Grown on r-Sapphire Substrates[J]. Chin. Phys. Lett., 2015, 32(09): 068103
[8] LIU Bin, SUN Guo-Sheng, LIU Xing-Fang, ZHANG Feng, DONG Lin, ZHENG Liu, YAN Guo-Guo, LIU Sheng-Bei, ZHAO Wan-Shun, WANG Lei, ZENG Yi-Ping, LI Xi-Guang, WANG Zhan-Guo, YANG Fei. Fast Homoepitaxial Growth of 4H-SiC Films on 4° off-Axis Substrates in a SiH4-C2H4-H2 System[J]. Chin. Phys. Lett., 2013, 30(12): 068103
[9] JI Xiao-Rui, YANG Xiao-Hong. Removing Impurity of cBN Crystal Prepared at High Pressure and High Temperature[J]. Chin. Phys. Lett., 2012, 29(3): 068103
[10] LI Zhe-Yang, **, HAN Ping, LI Yun, NI Wei-Jiang, BAO Hui-Qiang, LI Yu-Zhu . Epitaxial Growth of 4H-SiC on 4° Off-Axis Substrate for Power Devices[J]. Chin. Phys. Lett., 2011, 28(9): 068103
[11] LU Yun-Bin, LIAO Shu-Zhi**, PENG Hao-Jun, ZHANG Chun, ZHOU Hui-Ying, XIE Hao-Wen, OUYANG Yi-Fang, ZHANG Bang-Wei, . Size Model of Critical Temperature for Grain Growth in Nano V and Au[J]. Chin. Phys. Lett., 2011, 28(8): 068103
[12] GAO Zhao-Shun, ZHANG Xian-Ping, WANG Dong-Liang, QI Yan-Peng, WANG Lei, CHENG Jun-Sheng, WANG Qiu-Liang, MA Yan-Wei**, AWAJI Satoshi, WATANABE Kazuo . Fabrication and Properties of Aligned Sr0.6K0.4Fe2As2 Superconductors by High Magnetic Field Processing[J]. Chin. Phys. Lett., 2011, 28(6): 068103
[13] LI Shang-Sheng, LI Xiao-Lei, MA Hong-An, SU Tai-Chao, XIAO Hong-Yu, HUANG Guo-Feng, LI Yong, ZHANG Yi-Shun, JIA Xiao-Peng, ** . Reaction Mechanism of Al and N in Diamond Growth from a FeNiCo-C System[J]. Chin. Phys. Lett., 2011, 28(6): 068103
[14] GUO Xiao-Song, BAO Zhong, ZHANG Shan-Shan, XIE Er-Qing** . A Novel Model of the H Radical in Hot-Filament Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2011, 28(2): 068103
[15] HOU Zhao-Yang, LIU Li-Xia, LIU Rang-Su, TIAN Ze-An. Tracing Nucleation and Growth on Atomic Level in Amorphous Sodium by Molecular Dynamics Simulation[J]. Chin. Phys. Lett., 2010, 27(3): 068103
Viewed
Full text


Abstract