ATOMIC AND MOLECULAR PHYSICS |
|
|
|
|
Generation of Isolated Attosecond Pulse from Asymmetric Molecular Ions by Introducing Half-Cycle-Like Laser Fields |
LIU Sha-Sha, MIAO Xiang-Yang** |
College of Physics and Information Engineering, Shanxi Normal University, Linfen 041004
|
|
Cite this article: |
LIU Sha-Sha, MIAO Xiang-Yang 2015 Chin. Phys. Lett. 32 063302 |
|
|
Abstract We propose an efficient method for the generation of an isolated attosecond pulse from the asymmetric molecular ions HeH2+ by adding a half-cycle-like field (HCLF) to the fundamental driving laser field. The high-order harmonic generation (HHG) is investigated by numerically solving the time-dependent Schr?dinger equation. By performing the time-frequency distributions and the electronic wave packet probability densities, we find that the optimizing combined field is not only useful for extending the HHG cutoff, but also for simplifying the recombination channels through controlling the electron localization. In addition, by adjusting the intensity of the HCLF, a dominant short quantum path is selected to contribute the HHG spectrum. As a result, a 75-as isolated attosecond pulse is obtained by superposing a proper range of the harmonics.
|
|
Received: 26 February 2015
Published: 30 June 2015
|
|
PACS: |
33.80.Rv
|
(Multiphoton ionization and excitation to highly excited states (e.g., Rydberg states))
|
|
31.30.Gs
|
(Hyperfine interactions and isotope effects)
|
|
42.50.Hz
|
(Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)
|
|
|
|
|
[1] Brabec T and Krausz F 2000 Rev. Mod. Phys. 72 545 [2] Wu Y and Yang X X 2007 Phys. Rev. A 76 013832 [3] Wu Y and Yang X X 2007 Phys. Rev. Lett. 98 013601 [4] Lein M 2005 Phys. Rev. Lett. 94 053004 [5] Frolov M V, Manakov N L, Sarantseva T S, Sarantseva M Y, Ryabikin M Y and Starace A F 2009 Phys. Rev. Lett. 102 243901 [6] Paulus G G, Lindner F, Walther H, Baltuke A, Goulielmakis E, Lezius M and Krausz F 2003 Phys. Rev. Lett. 91 253004 [7] Esry B D and Ben-Itzhak I 2010 Phys. Rev. A 82 043409 [8] Krausz F and Ivanov M 2009 Rev. Mod. Phys. 81 163 [9] Corkum P B 1993 Phys. Rev. Lett. 71 1994 [10] Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L, Gaullikson E M, Attwood D T, Kienberger R, Krausz F and Kleineberg U 2008 Science 320 1614 [11] Xia C L and Liu X S 2013 Phys. Rev. A 87 043406 [12] Feng X, Gilbertson S, Mashiko H, Wang H, Khan S D, Chini M, Wu Y, Zhao K and Chang Z 2009 Phys. Rev. Lett. 103 183901 [13] Zeng Z N, Cheng Y, Song X H, Li R X and Xu Z Z 2007 Phys. Rev. Lett. 98 203901 [14] Song X H, Zeng Z N, Fu Y X, Cai B, Li R X, Cheng Y and Xu Z Z 2007 Phys. Rev. A 76 043830 [15] Zuo T, Chelkowski S and Bandrauk A D 1993 Phys. Rev. A 48 3837 [16] Moreno P, Plaja L and Roso L 1997 Phys. Rev. A 55 R1593 [17] Zhu X, Zhang C J, Gu M L and Yao J P 2014 Opt. Express 22 7947 [18] Bian X B and Bandrauk A D 2010 Phys. Rev. Lett. 105 093903 [19] Miao X Y and Zhang C P 2014 Phys. Rev. A 89 033410 [20] Miao X Y and Zhang C P 2014 Laser Phys. Lett. 11 115301 [21] You D, Jones R R, Bucksbaum P H and Dykaar D R 1993 Opt. Lett. 18 290 [22] Matos-Abiague A and Berakdar J 2003 Phys. Rev. A 68 063411 [23] Yu C X, Liu S B and Song H Y 2013 Phys. Rev. A 87 063407 [24] Pan Y, Zhao S F and Zhou X X 2013 Phys. Rev. A 87 035805 [25] Zhang C J and Liu C P 2015 New J. Phys. 17 023026 [26] Hu J, Han K L and He G Z 2005 Phys. Rev. Lett. 95 123001 [27] Miao X Y and Du H N 2013 Phys. Rev. A 87 053403 [28] He H X, Lu R F, Zhang P Y, Guo Y H, Han K L and He G Z 2011 Phys. Rev. A 84 033418 [29] Lu R F, Zhang P Y and Han K L 2008 Phys. Rev. E 77 066701 [30] Ben-Itzhak I, Gertner I, Heber O and Rosner B 1993 Phys. Rev. Lett. 71 1347 [31] Liu K L, Hong W Y and Lu P X 2011 Opt. Express 19 20279 [32] Burnett K, Reed V C, Cooper J and Knight P L 1992 Phys. Rev. A 45 3347 [33] Lagmago Kamta G and Bandrauk A D 2005 Phys. Rev. Lett. 94 203003 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|