Chin. Phys. Lett.  2015, Vol. 32 Issue (06): 067401    DOI: 10.1088/0256-307X/32/6/067401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Electronic Structure, Irreversibility Line and Magnetoresistance of Cu0.3Bi2Se3 Superconductor
YI He-Mian1, CHEN Chao-Yu1, SUN Xuan1, XIE Zhuo-Jin1, FENG Ya1, LIANG Ai-Ji1, PENG Ying-Ying1, HE Shao-Long1, ZHAO Lin1, LIU Guo-Dong1, DONG Xiao-Li1, ZHANG Jun1, CHEN Chuang-Tian2, XU Zu-Yan2, GU Gen-Da3, ZHOU Xing-Jiang1,4**
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190
3Condensed Matter Physics and Materials Sciences Department, Brookhaven National Laboratory, Upton, New York 11973, USA
4Collaborative Innovation Center of Quantum Matter, Beijing 100871
Cite this article:   
YI He-Mian, CHEN Chao-Yu, SUN Xuan et al  2015 Chin. Phys. Lett. 32 067401
Download: PDF(1331KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

CuxBi2Se3 is a superconductor that is a potential candidate for topological superconductors. We report our laser-based angle-resolved photoemission measurement on the electronic structure of the CuxBi2Se3 superconductor, and a detailed magneto-resistance measurement in both normal and superconducting states. We find that the topological surface state of the pristine Bi2Se3 topological insulator remains robust after the Cu-intercalation, while the Dirac cone location moves downward due to electron doping. Detailed measurements on the magnetic field-dependence of the resistance in the superconducting state establishes an irreversibility line and gives a value of the upper critical field at zero temperature of ∼4000 Oe for the Cu0.3Bi2Se3 superconductor with a middle point Tc of 1.9 K. The relation between the upper critical field Hc2 and temperature T is different from the usual scaling relation found in cuprates and in other kinds of superconductors. Small positive magneto-resistance is observed in Cu0.3Bi2Se3 superconductors up to room temperature. These observations provide useful information for further study of this possible candidate for topological superconductors.

Received: 17 May 2015      and accepted by WANG Ya-Yu Published: 30 June 2015
PACS:  74.25.F- (Transport properties)  
  79.60.Bm (Clean metal, semiconductor, and insulator surfaces)  
  74.25.Op (Mixed states, critical fields, and surface sheaths)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/6/067401       OR      https://cpl.iphy.ac.cn/Y2015/V32/I06/067401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YI He-Mian
CHEN Chao-Yu
SUN Xuan
XIE Zhuo-Jin
FENG Ya
LIANG Ai-Ji
PENG Ying-Ying
HE Shao-Long
ZHAO Lin
LIU Guo-Dong
DONG Xiao-Li
ZHANG Jun
CHEN Chuang-Tian
XU Zu-Yan
GU Gen-Da
ZHOU Xing-Jiang

[1] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[2] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[3] Moore J E 2010 Nature 464 194
[4] Fu L 2011 Phys. Rev. Lett. 106 106802
[5] Mong R S K et al 2010 Phys. Rev. B 81 245209
[6] Schnyder A P et al 2008 Phys. Rev. B 78 195125
[7] Hsieh T H et al 2012 Nat. Commun. 3 982
[8] Tanaka Y et al 2012 Nat. Phys. 8 800
[9] Xu S Y et al 2012 Nat. Commun. 3 1192
[10] Dziawa P et al 2012 Nat. Mater. 11 1023
[11] Wang J et al 2011 Phys. Rev. Lett. 106 126403
[12] Qi X L et al 2009 Phys. Rev. Lett. 102 187001
[13] Qi X L and Zhang S C 2010 Phys. Today 63 33
[14] Moore J 2009 Nat. Phys. 5 378
[15] Bernevig B A et al 2006 Science 314 1757
[16] Konig M et al 2007 Science 318 766
[17] Zhang H J et al 2013 Phys. Rev. Lett. 111 066801
[18] Xie Z J et al 2014 Nat. Commun. 5 3382
[19] Qi X L et al 2009 Science 323 1184
[20] Yu R et al 2010 Science 329 61
[21] Chang C Z et al 2013 Science 340 167
[22] Li R et al 2010 Nat. Phys. 6 284
[23] Majorana E 1937 Nuovo Cimento 14 171
[24] Wilczek F 2009 Nat. Phys. 5 614
[25] Moore G and Read N 1991 Nucl. Phys. B 360 362
[26] Read N and Green D 2000 Phys. Rev. B 61 10267
[27] Das S Sarma 2006 Phys. Rev. B 73 220502
[28] Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407
[29] Fu L and Kane C L 2009 Phys. Rev. Lett. 102 216403
[30] Zhang H J 2009 Nat. Phys. 5 438
[31] Xia Y 2009 Nat. Phys. 5 398
[32] Hor Y S 2010 Phys. Rev. Lett. 104 057001
[33] Wray L A 2010 Nat. Phys. 6 855
[34] Das P 2011 Phys. Rev. B 83 220513
[35] Sasaki S 2011 Phys. Rev. Lett. 107 217001
[36] Kriener M 2011 Phys. Rev. B 84 054513
[37] Kriener M 2011 Phys. Rev. Lett. 106 127004
[38] Sasaki S 2012 Phys. Rev. Lett. 109 217004
[39] Fu L and Berg E 2010 Phys. Rev. Lett. 105 097001
       Fu L 2014 Phys. Rev. B 90 100509
[40] Kirzhner T 2012 Phys. Rev. B 86 064517
[41] Chen X 2012 arXiv:1210.6054[cond-mat.supr-con]
[42] Levy N 2013 Phys. Rev. Lett. 110 117001
[43] Schneeloch J A 2015 Phys. Rev. B 91 144506
[44] Chen C Y 2012 Proc. Natl. Acad. Sci. USA 109 3694
[45] Liu G D 2008 Rev. Sci. Instrum. 79 023105
[46] Chen H J 2012 Appl. Phys. Lett. 101 121912
[47] Kim Y 2012 Appl. Phys. Lett. 100 071907
[48] Almasan C C 1992 Phys. Rev. Lett. 69 3812
[49] Werthamer N R, Helfand E and Hohenberg P C 1966 Phys. Rev. 147 295
[50] Suenaga M 1991 Phys. Rev. Lett. 66 1777
[51] Schmidt M F 1993 Phys. Rev. Lett. 70 2162
[52] Klein T 1998 Phys. Rev. B 58 12411
[53] Yan Y 2013 Appl. Phys. Lett. 103 033106

Related articles from Frontiers Journals
[1] B. L. Kang, M. Z. Shi, D. Zhao, S. J. Li, J. Li, L. X. Zheng, D. W. Song, L. P. Nie, T. Wu, and X. H. Chen. NMR Evidence for Universal Pseudogap Behavior in Quasi-Two-Dimensional FeSe-Based Superconductors[J]. Chin. Phys. Lett., 2022, 39(12): 067401
[2] Dong Li, Yue Liu, Zouyouwei Lu, Peiling Li, Yuhang Zhang, Sheng Ma, Jiali Liu, Jihu Lu, Hua Zhang, Guangtong Liu, Fang Zhou, Xiaoli Dong, and Zhongxian Zhao. Quasi-Two-Dimensional Nature of High-$T_{\rm c}$ Superconductivity in Iron-Based (Li,Fe)OHFeSe[J]. Chin. Phys. Lett., 2022, 39(12): 067401
[3] Jin Zhao, Yu-Lin Gan, Guang Yang, Yi-Gui Zhong, Cen-Yao Tang, Fa-Zhi Yang, Giao Ngoc Phan, Qiang-Tao Sui, Zhong Liu, Gang Li, Xiang-Gang Qiu, Qing-Hua Zhang, Jie Shen, Tian Qian, Li Lu, Lei Yan, Gen-Da Gu, and Hong Ding. Continuously Doping Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{8+\delta}$ into Electron-Doped Superconductor by CaH$_{2}$ Annealing Method[J]. Chin. Phys. Lett., 2022, 39(7): 067401
[4] Yi Zhao, Jun Deng, A. Bhattacharyya, D. T. Adroja, P. K. Biswas, Lingling Gao, Weizheng Cao, Changhua Li, Cuiying Pei, Tianping Ying, Hideo Hosono, and Yanpeng Qi. Superconductivity in the Layered Cage Compound Ba$_{3}$Rh$_{4}$Ge$_{16}$[J]. Chin. Phys. Lett., 2021, 38(12): 067401
[5] Shaobo Liu, Jie Yuan, Sheng Ma, Zouyouwei Lu, Yuhang Zhang, Mingwei Ma, Hua Zhang, Kui Jin, Li Yu, Fang Zhou, Xiaoli Dong, and Zhongxian Zhao. Magnetic-Field-Induced Spin Nematicity in FeSe$_{1-x}$S$_{x}$ and FeSe$_{1-y}$Te$_{y}$ Superconductor Systems[J]. Chin. Phys. Lett., 2021, 38(8): 067401
[6] Shaobo Liu, Sheng Ma, Zhaosheng Wang, Wei Hu, Zian Li, Qimei Liang, Hong Wang, Yuhang Zhang, Zouyouwei Lu, Jie Yuan, Kui Jin, Jian-Qi Li, Li Pi, Li Yu, Fang Zhou, Xiaoli Dong, and Zhongxian Zhao. Unusual Normal and Superconducting State Properties Observed in Hydrothermal Fe$_{1-\delta}$Se Flakes[J]. Chin. Phys. Lett., 2021, 38(5): 067401
[7] Mebrouka Boubeche, Jia Yu, Li Chushan, Wang Huichao, Lingyong Zeng, Yiyi He, Xiaopeng Wang, Wanzhen Su, Meng Wang, Dao-Xin Yao, Zhijun Wang, and Huixia Luo. Superconductivity and Charge Density Wave in Iodine-Doped CuIr$_{2}$Te$_{4}$[J]. Chin. Phys. Lett., 2021, 38(3): 067401
[8] Hao Ru, Yi-Shi Lin, Yin-Cong Chen, Yang Feng, Yi-Hua Wang. Observation of Two-Level Critical State in the Superconducting FeTe Thin Films$^*$[J]. Chin. Phys. Lett., 2019, 36(7): 067401
[9] Xi Zhang, Tianchuang Luo, Xiyao Hu, Jing Guo, Gongchang Lin, Yuehui Li, Yanzhao Liu, Xiaokang Li, Jun Ge, Ying Xing, Zengwei Zhu, Peng Gao, Liling Sun, Jian Wang. Superconductivity and Fermi Surface Anisotropy in Transition Metal Dichalcogenide NbTe$_{2}$[J]. Chin. Phys. Lett., 2019, 36(5): 067401
[10] Li-Jun Cui, Ping-Xiang Zhang, Guo Yan, Yong Feng, Xiang-Hong Liu, Jian-Feng Li, Xi-Feng Pan, Sheng-Nan Zhang, Xiao-Bo Ma, Jin-Shan Li. Influence of Precursor Powder Fabrication Methods on the Superconducting Properties of Bi-2223 Tapes[J]. Chin. Phys. Lett., 2019, 36(2): 067401
[11] Wei-Ke Wang, Yan Liu, Ji-Yong Yang, Hai-Feng Du, Wei Ning, Lang-Sheng Ling, Wei Tong, Zhe Qu, Zhao-Rong Yang, Ming-Liang Tian, Yu-Heng Zhang. The 45K Onset Superconductivity and the Suppression of the Nematic Order in FeSe by Electrolyte Gating[J]. Chin. Phys. Lett., 2016, 33(05): 067401
[12] WANG Pei-Pei, XUE Mian-Qi, LONG Yu-Jia, ZHAO Ling-Xiao, CAI Yao, YANG Huai-Xin, LI Jian-Qi, REN Zhi-An, CHEN Gen-Fu. Superconductivity in Pd-Intercalated Ternary Rare-Earth Polychalcogenide NdSeTe2[J]. Chin. Phys. Lett., 2015, 32(11): 067401
[13] PANG Fei. Magneto-Transport Properties of Insulating Bulk States in Bi(111) Films[J]. Chin. Phys. Lett., 2015, 32(02): 067401
[14] ZHANG Wen-Hao, SUN Yi, ZHANG Jin-Song, LI Fang-Sen, GUO Ming-Hua, ZHAO Yan-Fei, ZHANG Hui-Min, PENG Jun-Ping, XING Ying, WANG Hui-Chao, FUJITA Takeshi, HIRATA Akihiko, LI Zhi, DING Hao, TANG Chen-Jia, WANG Meng, WANG Qing-Yan, HE Ke, JI Shuai-Hua, CHEN Xi, WANG Jun-Feng, XIA Zheng-Cai, LI Liang, WANG Ya-Yu, WANG Jian, WANG Li-Li, CHEN Ming-Wei, XUE Qi-Kun, MA Xu-Cun. Direct Observation of High-Temperature Superconductivity in One-Unit-Cell FeSe Films[J]. Chin. Phys. Lett., 2014, 31(1): 067401
[15] MA Yong-Chang, YAN Qian, ZHAO Jie, LU Cui-Min. The Observation of Small Polaron Tunnelling in the ab-Plane of K0.85Fe1.66Se2.0[J]. Chin. Phys. Lett., 2013, 30(10): 067401
Viewed
Full text


Abstract