CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Identification of Topological Surface State in PdTe2 Superconductor by Angle-Resolved Photoemission Spectroscopy |
LIU Yan1, ZHAO Jian-Zhou1, YU Li1, LIN Cheng-Tian2, LIANG Ai-Ji1, HU Cheng1, DING Ying1, XU Yu1, HE Shao-Long1, ZHAO Lin1, LIU Guo-Dong1, DONG Xiao-Li1, ZHANG Jun1, CHEN Chuang-Tian3, XU Zu-Yan3, WENG Hong-Ming1,4, DAI Xi1,4, FANG Zhong1,4, ZHOU Xing-Jiang1,4* |
1Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, 70569 Stuttgart, Germany
3Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190
4Collaborative Innovation Center of Quantum Matter, Beijing 100871 |
|
Cite this article: |
LIU Yan, ZHAO Jian-Zhou, YU Li et al 2015 Chin. Phys. Lett. 32 067303 |
|
|
Abstract High-resolution angle-resolved photoemission measurements are carried out on transition metal dichalcogenide PdTe2 that is a superconductor with a Tc at 1.7 K. Combined with theoretical calculations, we discover for the first time the existence of topologically nontrivial surface state with Dirac cone in PbTe2 superconductor. It is located at the Brillouin zone center and possesses helical spin texture. Distinct from the usual three-dimensional topological insulators where the Dirac cone of the surface state lies at the Fermi level, the Dirac point of the surface state in PdTe2 lies deeply below the Fermi level at ∼1.75 eV binding energy and is well separated from the bulk states. The identification of topological surface state in PdTe2 superconductor deeply below the Fermi level provides a unique system to explore new phenomena and properties and opens a door for finding new topological materials in transition metal chalcogenides.
|
|
Received: 17 May 2015
Published: 30 June 2015
|
|
PACS: |
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
74.70.-b
|
(Superconducting materials other than cuprates)
|
|
79.60.-i
|
(Photoemission and photoelectron spectra)
|
|
74.25.Jb
|
(Electronic structure (photoemission, etc.))
|
|
|
|
|
[1] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[2] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[3] Qi X L et al 2009 Phys. Rev. Lett. 102 187001
[4] Qi X L and Zhang S C 2010 Phys. Today 63 33
[5] Moore J 2009 Nat. Phys. 5 378
[6] Qi X L, Hughes T L and Zhang S C 2008 Nat. Phys. 4 273
[7] Li R, Wang J, Qi X L and Zhang S C 2010 Nat. Phys. 6 284
[8] Qi X L, Li R, Zang J and Zhang S C 2009 Science 323 1184
[9] Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407
[10] Yu R et al 2010 Science 329 61
[11] Majorana E 1937 Nuovo Cimento 14 171
[12] Wilczek F 2009 Nat. Phys. 5 614
[13] Xia Y et al 2009 Nat. Phys. 5 398
[14] Zhang H J et al 2009 Nat. Phys. 5 438
[15] Chen Y L et al 2009 Science 325 178
[16] Hor Y S et al 2010 Phys. Rev. Lett. 104 057001
[17] Wray L A et al 2010 Nat. Phys. 6 855
[18] Moncton D E, Axe J D and DiSalvo F J 1977 Phys. Rev. B 16 801
[19] Wilson J A, Salvo F J D and Mahajan S 1975 Adv. Phys. 24 117
[20] Smaalen S V 2005 Acta Crystallogr. A61 51
[21] Wilson J A and Yoffe A D 1969 Adv. Phys. 18 193
[22] Finlayson T R 1986 Phys. Rev. B 33 2473
[23] Roberts B W 1976 J. Phys. Chem. Ref. Data 5 581
[24] Sipos B et al 2008 Nat. Mater. 7 960
[25] Pyon S, Kudo K and Nohara M 2012 J. Phys. Soc. Jpn. 81 053701
[26] Yang J J et al 2012 Phys. Rev. Lett. 108 116402
[27] Ali M N et al 2014 Nature 514 205
[28] Cai P L et al 2014 arXiv:1412.8298 [cond-mat.mtrl-sci]
[29] Ootsuki D et al 2013 J. Phys. Soc. Jpn. 82 093704
[30] Ootsuki K et al 2014 J. Phys. Soc. Jpn. 83 033704
[31] Ootsuki D et al 2014 Phys. Rev. B 89 104506
[32] Novoselov K S et al 2005 Proc. Natl. Acad. Sci. USA 102 10451
[33] Mak K F 2010 Phys. Rev. Lett. 105 136805
[34] Splendiani A 2010 Nano Lett. 10 1271
[35] Radisavljevic B 2011 Nat. Nanotechnol. 6 147
[36] Yoon Y, Ganapathi K and Salahuddin S 2011 Nano Lett. 11 3768
[37] Duerloo K A N, Li Y and Reed E J 2014 Nat. Commun. 5 4214
[38] Zhang Y et al 2014 Nat. Nanotechnol. 9 111
[39] Liu G D et al 2008 Rev. Sci. Instrum. 79 023105
[40] Liu Y et al 2015 Chin. Phys. B 24 067401
[41] Blaha P et al 2001 WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Vienna: Vienna University of Technology)
[42] McCarron E, Korenstein R and Wold A 1976 Mater. Res. Bull. 11 1457
[43] Jobic S, Brec R and Rouxel J 1992 J. Solid State Chem. 96 169
[44] Kim W S, Chao G Y and Cabri L J 1990 J. Less-Common Met. 162 61
[45] Soulard C et al 2005 J. Solid State Chem. 178 2008
[46] Jan J P and Skriver H L 1977 J. Phys. F: Met. Phys. 7 1719
[47] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[48] Guo G Y 1986 J. Phys. C: Solid State Phys. 19 5365
[49] Orders P J et al 1982 J. Phys. F: Met. Phys. 12 2737 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|