error
Content of CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY in our journal
    Published in last 1 year |  In last 2 years |  In last 3 years |  All
Please wait a minute...
For Selected: View Abstracts Toggle Thumbnails
Parallel DNA G-Quadruplex Induced and Stabilized by Curaxin CBL0137
Jing-Wei Kong, Shuo-Xing Dou, Wei Li, Hui Li, and Peng-Ye Wang
Chin. Phys. Lett.    2023, 40 (7): 078701 .   DOI: 10.1088/0256-307X/40/7/078701
Abstract   HTML   PDF (1525KB)
G-quadruplex (G4) is one of the higher-order DNA structures in guanine-rich sequences which are widely distributed across the genome. Due to their presence in oncogenic promoters and telomeres, G4 DNA structures become the novel targets in anticancer drug designs. Curaxin CBL0137, as an important candidate anticancer drug, can effectively inhibit the growth of multiple cancers. Although there is evidence that anticancer activity of curaxin is associated with its ability to bind DNA and to change the DNA topology, its therapeutic target and the underlying anti-cancer mechanism are still unclear. Here we show, for the first time, that curaxin CBL0137 induces G4 folding from anti-parallel to parallel structures, by single-molecule fluorescence resonance energy transfer technique. More importantly, we find that curaxin CBL0137 promotes G4 folding as well as stabilizes the folded G4 structures with long loops, giving a novel insight into effects of curaxin CBL0137 on DNA structures. Our work provides new ideas for the therapeutic mechanism of curaxin CBL0137 and for designs of new G4-targeting anticancer drugs.
Magneto-Orientated Graphite Double-Layer Homo-Structure with Broadband Microwave Absorption
Jun-Song Wang, Wei Ding, Cheng-Hong Zhang, Kang Qiu, You-Lin Gao, Mian-Ke Chen, Muhammad Adnan Aslam, Mahmoud A. Khalifa, Jia-Liang Luo, Jun Fang, and Zhi-Gao Sheng
Chin. Phys. Lett.    2023, 40 (11): 118101 .   DOI: 10.1088/0256-307X/40/11/118101
Abstract   HTML   PDF (8545KB)
We utilized magnetic fields as an efficient tool to manipulate the orientation and electromagnetic properties of graphite micro-flakes (GMFs). As a result, we successfully developed a GMF double-layer homo-structure, which shows excellent electromagnetic absorption properties. By tuning the direction of a small magnetic field (850 G), vertical and horizontal aligned GMFs are produced. Their electromagnetic parameters are effectively tailored by this magneto-orientation effect, and the vertical and horizontal aligned GMFs achieve good results in terms of impedance matching and microwave absorption. With the combination of these two magneto-orientated layers, vertically oriented as the surficial impedance matching layer and horizontally oriented as the inner loss layer, we design a GMF-based double-layer homo-structure. After thickness optimization, $-38.2$ dB minimum reflection loss and 6.4 GHz (11.6–18.0 GHz) absorption bandwidth are achieved. Our findings further emphasize the importance of material orientation freedom and provide a magneto-strategy to design multiple-layer structures and to produce high-performance microwave devices.
Hard Superconducting Gap in PbTe Nanowires
Yichun Gao, Wenyu Song, Shuai Yang, Zehao Yu, Ruidong Li, Wentao Miao, Yuhao Wang, Fangting Chen, Zuhan Geng, Lining Yang, Zezhou Xia, Xiao Feng, Yunyi Zang, Lin Li, Runan Shang, Qi-Kun Xue, Ke He, and Hao Zhang
Chin. Phys. Lett.    2024, 41 (3): 038502 .   DOI: 10.1088/0256-307X/41/3/038502
Abstract   HTML   PDF (6061KB)
Semiconductor nanowires coupled to a superconductor provide a powerful testbed for quantum device physics such as Majorana zero modes and gate-tunable hybrid qubits. The performance of these quantum devices heavily relies on the quality of the induced superconducting gap. A hard gap, evident as vanishing subgap conductance in tunneling spectroscopy, is both necessary and desired. A hard gap has been achieved and extensively studied before in III–V semiconductor nanowires (InAs and InSb). In this study, we present the observation of a hard superconducting gap in PbTe nanowires coupled to a superconductor Pb. The gap size $\varDelta$ is $\sim$ 1 meV (maximally 1.3 meV in one device). Additionally, subgap Andreev bound states can also be created and controlled through gate tuning. Tuning a device into the open regime can reveal Andreev enhancement of the subgap conductance. These results pave the way for diverse superconducting quantum devices based on PbTe nanowires.
Determination of Work Function for p- and n-Type 4H-SiC Single Crystals via Scanning Kelvin Probe Force Microscopy
Hui Li, Guobin Wang, Jingyu Yang, Zesheng Zhang, Jun Deng, and Shixuan Du
Chin. Phys. Lett.    2023, 40 (12): 128101 .   DOI: 10.1088/0256-307X/40/12/128101
Abstract   HTML   PDF (8340KB)
Silicon carbide (SiC) is a promising platform for fabricating high-voltage, high-frequency and high-temperature electronic devices such as metal oxide semiconductor field effect transistors in which many junctions or interfaces are involved. The work function (WF) plays an essential role in these devices. However, studies of the effect of conductive type and polar surfaces on the WF of SiC are limited. Here, we report the measurement of WFs of Si- and C-terminated polar surfaces for both p-type and n-type conductive 4H-SiC single crystals by scanning Kelvin probe microscopy (SKPFM). The results show that p-type SiC exhibits a higher WF than n-type SiC. The WF of a C-terminated polar surface is higher than that of a Si-terminated polar surface, which is further confirmed by first-principles calculations. By revealing this long-standing knowledge gap, our work facilitates the fabrication and development of SiC-based electronic devices, which have tremendous potential applications in electric vehicles, photovoltaics, and so on. This work also shows that SKPFM is a good method for identifying polar surfaces of SiC and other polar materials nondestructively, quickly and conveniently.
Performance Improvement of a Direct Carbon Fuel Cell through an Irreversible Vacuum Thermionic Generator
Yuan Wang and Shanhe Su
Chin. Phys. Lett.    2023, 40 (12): 128201 .   DOI: 10.1088/0256-307X/40/12/128201
Abstract   HTML   PDF (1933KB)
A novel hybrid system consisting of a direct carbon fuel cell (DCFC), a thermionic generator (TIG), and a regenerator is developed to recover the exhaust heat from the fuel cell. Expressions for the power output and efficiency of subsystems and the hybrid system are derived. Based on the energy balance equation, the area matching problem between the DCFC and the TIG is discussed and solved. By considering the main irreversibilities, the influences of the DCFC's current density and the TIG's voltage on the performance of the hybrid system are revealed. The maximum power output density and the corresponding efficiency of the hybrid system are, respectively, equal to 379 W/m$^{2}$ and 36%. To enhance the maximum power density of the single DCFC, the optimal regions of the main parameters are determined.
Characteristics of Speed–Acceleration Phase Diagram of Migrating Cells
Yikai Ma and Wei Chen
Chin. Phys. Lett.    2023, 40 (12): 128701 .   DOI: 10.1088/0256-307X/40/12/128701
Abstract   HTML   PDF (1634KB)
Cell movement behavior is one of the most interesting biological problems in physics, biology, and medicine. We experimentally investigate the characteristics of random cell motion during migration. Observing cell motion trajectories under a microscope, we employ a nonlinear dynamics method to construct a speed–acceleration phase diagram. Our analysis reveals the presence of a fixed point in this phase diagram, which suggests that migrating cells possess a stable state. Cells that deviate from this stable state display a tendency to return to it, following the streamline trends of an attractor structure in the phase diagram. We derive a set of characteristic values describing cell motion, encompassing inherent speed, inherent acceleration, characteristic time for speed change, and characteristic time for acceleration change. We develop a differential equation model based on experimental data and conduct numerical calculations. The computational results align with the findings obtained from experiments. Our research suggests that the asymmetrical characteristics observed in cell motion near an inherent speed primarily arise from properties of inherent acceleration of cells.
Quantum State-Resolved Nonadiabatic Dynamics of the H + NaF $\to$ Na + HF Reaction
Ye Mao, Hanghang Chen, Zijiang Yang, Bayaer Buren, and Maodu Chen
Chin. Phys. Lett.    2024, 41 (3): 038201 .   DOI: 10.1088/0256-307X/41/3/038201
Abstract   HTML   PDF (6121KB)
The H + NaF reaction is investigated at the quantum state-resolved level using the time-dependent wave-packet method based on a set of accurate diabatic potential energy surfaces. Oscillatory structures in the total reaction probability indicate the presence of the short-lived intermediate complex, attributed to a shallow potential well and exothermicity. Ro-vibrational state-resolved integral cross sections reveal the inverted population distributions of the product. The HF product favors an angular distribution in the forward hemisphere of 30$^{\circ}$–$60^{\circ}$ within the collision energy range from the threshold to 0.50 eV, which is related to the nonlinear approach of the H atom to the NaF molecule. Quantum generalized deflection functions show that the low-$J$ partial waves contribute primarily to the backward scattering, while the high-$J$ partial waves govern the forward scattering. The correlation between the partial wave $J$ and the scattering angle $\vartheta$ proves that the reaction follows a predominant direct reaction mechanism.
MWCNT Doped Reverse-Mode Polymer Network Liquid Crystals with Frequency Response Property
Jiajun Li, Dongchao Ji, Zhibo Zhang, Yanan Yang, Ruicong Zhang, Tianyu Wang, Yumin Zhang, Wenxin Cao, and Jiaqi Zhu
Chin. Phys. Lett.    2024, 41 (3): 038501 .   DOI: 10.1088/0256-307X/41/3/038501
Abstract   HTML   PDF (6861KB)
Polymer-liquid crystals (PLCs) are common materials for smart windows. However, PLC smart windows usually require high driving voltage to maintain transparency. We synthesized a novel PLC smart film by doping multi-wall carbon nanotubes (MWCNTs) into a reverse-mode polymer network liquid crystal (R-PNLC). It is found that doping MWCNTs could effectively reduce the threshold voltage ($V_{\rm th}$) of R-PNLC from 19.0 V to 8.4 V. Due to co-orientation between MWCNT and LC molecules, the doped R-PNLC is able to maintain a high transmittance of visible light ($\sim$ $80$%) without an applied electric field. We find that doping MWCNTs could change the frequency modulation property of R-PNLC. The doped R-PNLC exhibits a wider frequency modulation range up to 40000 Hz, while the frequency modulation of the undoped R-PNLC reached to a saturation at 23000 Hz. We also tested the electromagnetic interference (EMI) shielding efficiency of R-PNLC and find that the EMI shielding efficiency could be improved by doping only 0.01 wt% MWCNTs into the system. The total shielding effectiveness of 0.01 wt% MWCNT doped R-PNLC was up to 14.91 dB in the frequency band of 5.38–8.17 GHz. This study demonstrates that the films are potentially useful for low-energy-consumption smart windows with enhanced electromagnetic shielding capability.
High-Performance Organic Field-Effect Transistors Based on Two-Dimensional Vat Orange 3 Crystals
Ning Yan, Zhiren Xiong, Chengbing Qin, and Xiaoxi Li
Chin. Phys. Lett.    2024, 41 (2): 028101 .   DOI: 10.1088/0256-307X/41/2/028101
Abstract   HTML   PDF (9287KB)
The exploration and research of low-cost, environmentally friendly, and sustainable organic semiconductor materials are of immense significance in various fields, including electronics, optoelectronics, and energy conversion. Unfortunately, these semiconductors have almost poor charge transport properties, which range from $\sim$ $10^{-4}$ cm$^{2}\cdot$V$^{-1}\cdot$s$^{-1}$ to $\sim$ $10^{-2}$ cm$^{2}\cdot$V$^{-1}\cdot$s$^{-1}$. Vat orange 3, as one of these organic semiconductors, has great potential due to its highly conjugated structure. We obtain high-quality multilayered Vat orange 3 crystals with two-dimensional (2D) growth on h-BN surfaces with thickness of 10–100 nm using physical vapor transport. Raman's results confirm the stability of the chemical structure of Vat orange 3 during growth. Furthermore, by leveraging the structural advantages of 2D materials, an organic field-effect transistor with a 2D vdW vertical heterostructure is further realized with h-BN encapsulation and multilayered graphene contact electrodes, resulting in an excellent transistor performance with On/Off ratio of $10^{4}$ and high field-effect mobility of 0.14 cm$^{2}\cdot$V$^{-1}\cdot$s$^{-1}$. Our results show the great potential of Vat orange 3 with 2D structures in future nano-electronic applications. Furthermore, we showcase an approach that integrates organic semiconductors with 2D materials, aiming to offer new insights into the study of organic semiconductors.
  First page | Prev page | Next page | Last page Page 1 of 1, 9 records