Chin. Phys. Lett.  2024, Vol. 41 Issue (3): 038502    DOI: 10.1088/0256-307X/41/3/038502
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Hard Superconducting Gap in PbTe Nanowires
Yichun Gao1†, Wenyu Song1†, Shuai Yang1†, Zehao Yu1, Ruidong Li1, Wentao Miao1, Yuhao Wang1, Fangting Chen1, Zuhan Geng1, Lining Yang1, Zezhou Xia1, Xiao Feng1,2,3,4, Yunyi Zang2,4, Lin Li2, Runan Shang2,4, Qi-Kun Xue1,2,3,4,5, Ke He1,2,3,4*, and Hao Zhang1,2,3*
1State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
2Beijing Academy of Quantum Information Sciences, Beijing 100193, China
3Frontier Science Center for Quantum Information, Beijing 100084, China
4Hefei National Laboratory, Hefei 230088, China
5Southern University of Science and Technology, Shenzhen 518055, China
Cite this article:   
Yichun Gao, Wenyu Song, Shuai Yang et al  2024 Chin. Phys. Lett. 41 038502
Download: PDF(6061KB)   PDF(mobile)(6957KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Semiconductor nanowires coupled to a superconductor provide a powerful testbed for quantum device physics such as Majorana zero modes and gate-tunable hybrid qubits. The performance of these quantum devices heavily relies on the quality of the induced superconducting gap. A hard gap, evident as vanishing subgap conductance in tunneling spectroscopy, is both necessary and desired. A hard gap has been achieved and extensively studied before in III–V semiconductor nanowires (InAs and InSb). In this study, we present the observation of a hard superconducting gap in PbTe nanowires coupled to a superconductor Pb. The gap size $\varDelta$ is $\sim$ 1 meV (maximally 1.3 meV in one device). Additionally, subgap Andreev bound states can also be created and controlled through gate tuning. Tuning a device into the open regime can reveal Andreev enhancement of the subgap conductance. These results pave the way for diverse superconducting quantum devices based on PbTe nanowires.
Received: 22 December 2023      Editors' Suggestion Published: 12 March 2024
PACS:  85.25.-j (Superconducting devices)  
  73.21.Hb (Quantum wires)  
  81.07.Gf (Nanowires)  
  85.35.-p (Nanoelectronic devices)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/3/038502       OR      https://cpl.iphy.ac.cn/Y2024/V41/I3/038502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yichun Gao
Wenyu Song
Shuai Yang
Zehao Yu
Ruidong Li
Wentao Miao
Yuhao Wang
Fangting Chen
Zuhan Geng
Lining Yang
Zezhou Xia
Xiao Feng
Yunyi Zang
Lin Li
Runan Shang
Qi-Kun Xue
Ke He
and Hao Zhang
[1] Takei S, Fregoso B M, Hui H Y, Lobos A M, and Sarma S D 2013 Phys. Rev. Lett. 110 186803
[2] Doh Y J, van Dam J A, Roest A L, Bakkers E P A M, Kouwenhoven L P, and Franceschi S D 2015 Science 309 272
[3] Mourik V, Zuo K, Frolov S M, Plissard S, Bakkers E P, and Kouwenhoven L P 2012 Science 336 1003
[4] Gül Ö, Zhang H, de Vries F K et al. 2017 Nano Lett. 17 2690
[5] Zhang H, Gül Ö, Conesa-Boj S, Nowak M P et al. 2017 Nat. Commun. 8 16025
[6] Chang W, Albrecht S, Jespersen T, Kuemmeth F, Krogstrup P, Nygård J, and Marcus C M 2015 Nat. Nanotechnol. 10 232
[7] Krogstrup P, Ziino N L B, Chang W, Albrecht S, Madsen M, Johnson E, Nygård J, Marcus C, and Jespersen T 2015 Nat. Mater. 14 400
[8] Zellekens P, Deacon R, Perla P et al. 2020 Phys. Rev. Appl. 14 054019
[9] Pan D, Song H D, Zhang S, Liu L, Wen L J, Liao D Y, Zhuo R, Wang Z C, Zhang Z T, Yang S, Ying J H, Miao W T, Shang R N, Zhang H, and Zhao J H 2022 Chin. Phys. Lett. 39 058101
[10] Deng M T, Vaitiekėnas S, Hansen E B, Danon J, Leijnse M, Flensberg K, Nygård J, Krogstrup P, and Marcus C M 2016 Science 354 1557
[11] Gül Ö, Zhang H, Bommer J D et al. 2018 Nat. Nanotechnol. 13 192
[12] Song H D, Zhang Z T, Pan D, Liu D H, Wang Z Y, Cao Z, Liu L, Wen L, Liao D, Zhuo R, Liu D E, Shang R, Zhao J, and Zhang H 2022 Phys. Rev. Res. 4 033235
[13] Wang Z Y, Song H D, Pan D, Zhang Z T, Miao W T, Li R D, Cao Z, Zhang G, Liu L, Wen L J, Zhuo R, Liu D E, He K, Shang R, Zhao J, and Zhang H 2022 Phys. Rev. Lett. 129 167702
[14] Dvir T, Wang G, van Loo N, Liu C X, Mazur G, Bordin A, Haaf S, Wang J Y, Driel D, Zatelli F et al. 2023 Nature 614 445
[15] Aghaee M, Akkala A, Alam Z et al. 2023 Phys. Rev. B 107 245423
[16] Zhang H, Liu D E, Wimmer M, and Kouwenhoven L P 2019 Nat. Commun. 10 5128
[17] Prada E, San-Jose P, de Moor M W, Geresdi A, Lee E J, Klinovaja J, Loss D, Nygård J, Aguado R, and Kouwenhoven L P 2020 Nat. Rev. Phys. 2 575
[18] Cao Z, Chen S, Zhang G, and Liu D E 2023 Sci. Chin. Phys. Mech. & Astron. 66 267003
[19] Larsen T W, Petersson K D, Kuemmeth F, Jespersen T S, Krogstrup P, Nygård J, and Marcus C M 2015 Phys. Rev. Lett. 115 127001
[20] de Lange G, van Heck B, Bruno A, van Woerkom D J, Geresdi A, Plissard S R, Bakkers E P A M, Akhmerov A R, and DiCarlo L 2015 Phys. Rev. Lett. 115 127002
[21] Tosi L, Metzger C, Goffman M F, Urbina C, Pothier H, Park S, Yeyati A L, Nygård J, and Krogstrup P 2019 Phys. Rev. X 9 011010
[22] Hays M, Fatemi V, Bouman D, Cerrillo J, Diamond S, Serniak K, Connolly T, Krogstrup P, Nygård J, Yeyati A L, Geresdi A, and Devoret M H 2021 Science 373 430
[23] Huo J R, Xia Z Z, Li Z L, Zhang S, Wang Y Q, Pan D, Liu Q C, Liu Y L, Wang Z C, Gao Y C, Zhao J H, Li T F, Ying J H, Shang R N, and Zhang H 2023 Chin. Phys. Lett. 40 047302
[24] Pita-Vidal M, Bargerbos A, Z̆itko R et al. 2023 Nat. Phys. 19 1110
[25] Lutchyn R M, Sau J D, and Das Sarma S 2010 Phys. Rev. Lett. 105 077001
[26] Oreg Y, Refael G, and von Oppen F 2010 Phys. Rev. Lett. 105 177002
[27] Liu J, Potter A C, Law K T, and Lee P A 2012 Phys. Rev. Lett. 109 267002
[28] Rainis D, Trifunovic L, Klinovaja J, and Loss D 2013 Phys. Rev. B 87 024515
[29] Pan H N and Das Sarma S 2020 Phys. Rev. Res. 2 013377
[30] Das Sarma S and Pan H 2021 Phys. Rev. B 103 195158
[31] Zeng C C, Sharma G, Tewari S, and Stanescu T 2022 Phys. Rev. B 105 205122
[32] Cao Z, Liu D E, He W X, Liu X, He K, and Zhang H 2022 Phys. Rev. B 105 085424
[33] Jiang Y Y, Yang S, Li L, Song W Y, Miao W T, Tong B B, Geng Z H, Gao Y C, Li R D, Chen F T, Zhang Q H, Meng F, Gu L, Zhu K J, Zang Y, Shang R, Cao Z, Feng X, Xue Q K, Liu D E, Zhang H, and He K 2022 Phys. Rev. Mater. 6 034205
[34] Jung J, Schellingerhout S G, Ritter M F, ten Kate S C, van der Molen O A, de Loijer S, Verheijen M A, Riel H, Nichele F, and Bakkers E P 2022 Adv. Funct. Mater. 32 2208974
[35] Geng Z H, Zhang Z T, Chen F T, Yang S, Jiang Y Y, Gao Y C, Tong B B, Song W Y, Miao W T, Li R D, Wang Y H, Zhang Q H, Meng F Q, Gu L, Zhu K J, Zang Y Y, Li L, Shang R N, Feng X, Xue Q K, He K, and Zhang H 2022 Phys. Rev. B 105 L241112
[36] ten Kate S C, Ritter M F, Fuhrer A, Jung J, Schellingerhout S G, Bakkers E P A M, Riel H, and Nichele F 2022 Nano Lett. 22 7049
[37] Song W Y, Wang Y H, Miao W T, Yu Z H, Gao Y C, Li R D, Yang S, Chen F T, Geng Z H, Zhang Z T, Zhang S, Zang Y Y, Cao Z, Liu D E, Shang R N, Feng X, Li L, Xue Q K, He K, and Zhang H 2023 Phys. Rev. B 108 045426
[38] Zhang Z T, Song W Y, Gao Y C, Wang Y H, Yu Z H, Yang S, Jiang Y Y, Miao W T, Li R D, Chen F T, Geng Z H, Zhang Q H, Meng F Q, Lin T, Gu L, Zhu K J, Zang Y Y, Li L, Shang R N, Feng X, Xue Q K, He K, and Zhang H 2023 Phys. Rev. Mater. 7 086201
[39] Kanne T, Marnauza M, Olsteins D, Carrad D, Sestoft J E, Bruijckere J, Zeng L, Johnson E, Olsson E, Grove-Rasmussen K, and Nygård J 2021 Nat. Nanotechnol. 16 776
[40] Dynes R C, Narayanamurti V, and Garno J P 1978 Phys. Rev. Lett. 41 1509
[41] Pillet J D, Quay C H L, Morfin P, Bena C, Yeyati A L, and Joyez P 2010 Nat. Phys. 6 965
[42] Dirks T, Hughes T L, Lal S, Uchoa B, Chen Y F, Chialvo C, Goldbart P M, and Mason N 2010 Nat. Phys. 7 386
[43] Lee E J H, Jiang X C, Houzet M, Aguado R, Lieber C M, and De Franceschi S 2014 Nat. Nanotechnol. 9 79
[44] Zhang S, Wang Z C, Pan D, Li H Z, Lu S, Li Z L, Zhang G, Liu D H, Cao Z, Liu L, Wen L J, Liao D, Zhuo R, Shang R, Liu D E, Zhao J, and Zhang H 2022 Phys. Rev. Lett. 128 076803
[45] Wang Z C, Zhang S, Pan D, Zhang G, Xia Z Z, Li Z L, Liu D H, Cao Z, Liu L, Wen L J, Liao D Y, Zhuo R, Li Y Q, Liu D E, Shang R, Zhao J H, and Zhang H 2022 Phys. Rev. B 106 205421
[46] Prada E, San-Jose P, and Aguado R 2012 Phys. Rev. B 86 180503
[47] Kells G, Meidan D, and Brouwer P 2012 Phys. Rev. B 86 100503
[48] Liu C X, Sau J D, Stanescu T D, and Sarma S D 2017 Phys. Rev. B 96 075161
[49] Reeg C, Dmytruk O, Chevallier D, Loss D, and Klinovaja J 2018 Phys. Rev. B 98 245407
[50] Moore C, Zeng C, Stanescu T D, and Tewari S 2018 Phys. Rev. B 98 155314
[51] Vuik A, Nijholt B, Akhmerov A, and Wimmer M 2019 SciPost Phys. 7 061
[52] Cao Z, Zhang H, Lü H F, He W X, Lu H Z, and Xie X C 2019 Phys. Rev. Lett. 122 147701
[53] Wang Y H, Chen F T, Song W Y, Geng Z H, Yu Z, Yang L, Gao Y, Li R, Yang S, Miao W, Xu W, Wang Z, Xia Z, Song H D, Feng X, Wang T, Zang Y, Li L, Shang R, Xue Q, He K, and Zhang H 2023 Nano Lett. 23 11137
[54] Blonder G, Tinkham M M, and Klapwijk K T 1982 Phys. Rev. B 25 4515
[55] Beenakker C W J 1992 Phys. Rev. B 46 12841
[56] Liu C X, Setiawan F, Sau J D, and Das Sarma S 2017 Phys. Rev. B 96 054520
[57] Bommer J D, Zhang H, Gül Ö et al. 2019 Phys. Rev. Lett. 122 187702
[58] Grove-Rasmussen K, Jørgensen H I, Andersen B M, Paaske J, Jespersen T S, Nygård J, Flensberg K, and Lindelof P E 2009 Phys. Rev. B 79 134518
[59] Andersen B M, Flensberg K, Koerting V, and Paaske J 2011 Phys. Rev. Lett. 107 256802
[60] Lee E J H, Jiang X C, Aguado R, Katsaros G, Lieber C M, and De Franceschi S 2012 Phys. Rev. Lett. 109 186802
[61] He J B, Pan D, Yang G, Liu M, Ying J, Lyu Z, Fan J, Jing X, Liu G, Lu B, Liu D E, Zhao J, Lu L, and Qu F 2020 Phys. Rev. B 102 075121
[62] Albrecht S, Higginbotham A, Madsen M, Kuemmeth F, Jespersen T, Nygård J, Krogstrup P, and Marcus C 2016 Nature 531 206
Related articles from Frontiers Journals
[1] Jierong Huo, Zezhou Xia, Zonglin Li, Shan Zhang, Yuqing Wang, Dong Pan, Qichun Liu, Yulong Liu, Zhichuan Wang, Yichun Gao, Jianhua Zhao, Tiefu Li, Jianghua Ying, Runan Shang, and Hao Zhang. Gatemon Qubit Based on a Thin InAs-Al Hybrid Nanowire[J]. Chin. Phys. Lett., 2023, 40(4): 038502
[2] Zhiling Wang, Zenghui Bao, Yukai Wu , Yan Li , Cheng Ma , Tianqi Cai , Yipu Song , Hongyi Zhang, and Luming Duan. Improved Superconducting Qubit State Readout by Path Interference[J]. Chin. Phys. Lett., 2021, 38(11): 038502
[3] Yin-Ping Pan, Yue Wang, Ruo-Ting Yang, Yan Tang, Xiao-Yu Liu, Hua Jin, Lin-Xian Ma, Yi-Shi Lin, Zhen Wang, Jie Ren, Yi-Hua Wang, and Lei Chen. Characterization of Scanning SQUID Probes Based on 3D Nano-Bridge Junctions in Magnetic Field[J]. Chin. Phys. Lett., 2020, 37(8): 038502
[4] Yang-Qing Guo, Nian-Quan Jiang. Controllably Coupling Superconducting Charge and Flux Qubits by Using Nanomechanical Resonator[J]. Chin. Phys. Lett., 2017, 34(5): 038502
[5] Jie Liu, Li-Qun Zhang, Zhen-Nan Jiang, Kamal Ahmad, Jian-She Liu, Wei Chen. Superconducting Nanowire Single Photon Detector with Optical Cavity[J]. Chin. Phys. Lett., 2016, 33(08): 038502
[6] Ming-Zhi Guan, Qiang Hu, Pei-Feng Gao, Xing-Zhe Wang, Tong-Jun Yang, Wei Wu, Can-Jie Xin, Bei-Min Wu, Li-Zhen Ma. Mechanical Analysis and Measurements of a Multicomponent NbTi/Cu Superconducting Magnets Structure for the Fully Superconducting Electron Cyclotron Resonance Ion Source[J]. Chin. Phys. Lett., 2016, 33(05): 038502
[7] Pei Pei, He-Fei Huang, Yan-Qing Guo, He-Shan Song. Scalable Quantum Information Transfer between Individual Nitrogen-Vacancy Centers by a Hybrid Quantum Interface[J]. Chin. Phys. Lett., 2016, 33(02): 038502
[8] ZHOU Pin-Jia, WANG Yi-Wen, WEI Lian-Fu. Anomalous Temperature Dependence of the Quality Factor in a Superconducting Coplanar Waveguide Resonator[J]. Chin. Phys. Lett., 2014, 31(06): 038502
[9] LI Jun-Wang, WU Chun-Wang, DAI Hong-Yi** . Quantum Information Transfer in Circuit QED with Landau–Zener Tunneling[J]. Chin. Phys. Lett., 2011, 28(9): 038502
[10] WU Qin-Qin, LIAO Jie-Qiao, KUANG Le-Man. Quantum State Transfer between Charge and Flux Qubits in Circuit-QED[J]. Chin. Phys. Lett., 2008, 25(4): 038502
[11] KANG Lin, WU Pei-Heng, PAN Jun, CAI Wei-Xing, YANG Sen-Zu, CAO Chun-Hai. High-Tc Superconductor Detection Coils for a Magnetic Resonance System[J]. Chin. Phys. Lett., 2002, 19(9): 038502
[12] WANG Shiguang, DAI Yuandong, ZENG Xianghui, ZHENG Peihui, WANG Shouzheng, XIONG Guangcheng, LIAN Guijun, GAN Zizhao . Sensitive Single-Level Magnetometers of High Tc dc SQUIDS[J]. Chin. Phys. Lett., 1995, 12(4): 038502
[13] WANG Huabing, XU Weiwei, CHENG Qiheng, JI Zhengming, GAO Ruizhang, WU Peiheng, XU Zhicai*. Phase-Locking of a Gunn Oscillator at 3mm Waveband Using High Temperature Superconducting Josephson Junction Harmonic Mixer [J]. Chin. Phys. Lett., 1995, 12(4): 038502
Viewed
Full text


Abstract