CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Parallel DNA G-Quadruplex Induced and Stabilized by Curaxin CBL0137 |
Jing-Wei Kong1,2, Shuo-Xing Dou1,2, Wei Li1,3*, Hui Li4*, and Peng-Ye Wang1,2,3* |
1Laboratory of Soft Matter Physics and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China 3Songshan Lake Materials Laboratory, Dongguan 523808, China 4School of Systems Science and Institute of Nonequilibrium Systems, Beijing Normal University, Beijing 100875, China
|
|
Cite this article: |
Jing-Wei Kong, Shuo-Xing Dou, Wei Li et al 2023 Chin. Phys. Lett. 40 078701 |
|
|
Abstract G-quadruplex (G4) is one of the higher-order DNA structures in guanine-rich sequences which are widely distributed across the genome. Due to their presence in oncogenic promoters and telomeres, G4 DNA structures become the novel targets in anticancer drug designs. Curaxin CBL0137, as an important candidate anticancer drug, can effectively inhibit the growth of multiple cancers. Although there is evidence that anticancer activity of curaxin is associated with its ability to bind DNA and to change the DNA topology, its therapeutic target and the underlying anti-cancer mechanism are still unclear. Here we show, for the first time, that curaxin CBL0137 induces G4 folding from anti-parallel to parallel structures, by single-molecule fluorescence resonance energy transfer technique. More importantly, we find that curaxin CBL0137 promotes G4 folding as well as stabilizes the folded G4 structures with long loops, giving a novel insight into effects of curaxin CBL0137 on DNA structures. Our work provides new ideas for the therapeutic mechanism of curaxin CBL0137 and for designs of new G4-targeting anticancer drugs.
|
|
Received: 24 April 2023
Published: 10 June 2023
|
|
|
|
|
|
[1] | Simonsson T 2001 Biol. Chem. 382 621 |
[2] | Maizels N and Gray L T 2013 PLOS Genet. 9 e1003468 |
[3] | Varizhuk A, Isaakova E, and Pozmogova G 2019 Bioessays 41 1900091 |
[4] | Bochman M L, Paeschke K, and Zakian V A 2012 Nat. Rev. Genet. 13 770 |
[5] | Wu G H, Xing Z, Tran E J, and Yang D Z 2019 Proc. Natl. Acad. Sci. USA 116 20453 |
[6] | Wang Q, Liu J Q, Chen Z, Zheng K W, Chen C Y, Hao Y H, and Tan Z 2011 Nucl. Acids Res. 39 6229 |
[7] | Moye A L, Porter K C, Cohen S B, Phan T, Zyner K G, Sasaki N, Lovrecz G O, Beck J L, and Bryan T M 2015 Nat. Commun. 6 7643 |
[8] | Bryan T M 2019 Molecules 24 3439 |
[9] | Liu Y R, Wang P Y, Li W, and Xie P 2021 Chin. Phys. Lett. 38 118701 |
[10] | Spiegel J, Adhikari S, and Balasubramanian S 2020 Trends Biochem. Sci. 2 123 |
[11] | Balasubramanian S and Neidle S 2009 Curr. Opin. Chem. Biol. 13 345 |
[12] | Li B, Ji C, Lu X M, Liu Y R, Li W, Dou S X, Li H, and Wang P Y 2018 Chin. Phys. Lett. 35 118701 |
[13] | Di Bussolo V and Minutolo F 2011 ChemMedChem 6 2133 |
[14] | Jin M Z, Xia B R, Xu Y, and Jin W L 2018 Front. Oncology 8 598 |
[15] | Safina A, Cheney P, Pal M, Brodsky L, Ivanov A, Kirsanov K, Lesovaya E, Naberezhnov D, Nesher E, Koman I, Wang D, Wang J M, Yakubovskaya M, Winkler D, and Gurova K 2017 Nucl. Acids Res. 45 1925 |
[16] | Lu K, Liu C F, Liu Y N, Luo A F, Chen J, Lei Z C, Kong J W, Xiao X, Zhang S M, Wang Y Z, Ma L, Dou S X, Wang P Y, Li M, Li G H, Li W, and Chen P 2021 Biochemistry 60 494 |
[17] | Kantidze O L, Luzhin A V, Nizovtseva E V, Safina A, Valieva M E, Golov A K, Velichko A K, Lyubitelev A V, Feofanov A V, Gurova K V, Studitsky V M, and Razin S V 2019 Nat. Commun. 10 1441 |
[18] | Dallavalle S, Mattio L M, Artali R, Musso L, Avino A, Fabrega C, Eritja R, Gargallo R, and Mazzini S 2021 Int. J. Mol. Sci. 22 6476 |
[19] | Lu X M, Li H, You J, Li W, Wang P Y, Li M, Dou S X, and Xi X G 2018 J. Phys. Chem. B 122 9499 |
[20] | Hou X M, Fu Y B, Wu W Q, Wang L, Teng F Y, Xie P, Wang P Y, and Xi X G 2017 Nucl. Acids Res. 45 11401 |
[21] | Pan B Y, Dou S X, Yang Y, Xu Y N, Bugnard E, Ding X Y, Zhang L Y, Wang P Y, Li M, and Xi X G 2010 J. Biol. Chem. 285 15884 |
[22] | Teng F Y, Wang T T, Guo H L, Xin B G, Sun B, Dou S X, Xi X G, and Hou X M 2020 J. Biol. Chem. 295 17646 |
[23] | Wu W Q, Zhang M L, and Song C P 2020 J. Biol. Chem. 295 5461 |
[24] | Tippana R, Xiao W K, and Myong S 2014 Nucl. Acids Res. 42 8106 |
[25] | Aznauryan M, Sondergaard S, Noer S L, Schiott B, and Birkedal V 2016 Nucl. Acids Res. 44 11024 |
[26] | You J, Li H, Lu X M, Li W, Wang P Y, Dou S X, and Xi X G 2017 Biosci. Rep. 37 Bsr20170771 |
[27] | Lee J Y, Okumus B, Kim D S, and Ha T J 2005 Proc. Natl. Acad. Sci. USA 102 18938 |
[28] | Qiao H Z, Wu Y Y, Tu Y, and Ji C M 2021 Chin. Phys. B 30 018702 |
[29] | Stein W D 2002 Int. Rev. Cytol. 215 231 |
[30] | Lang F 2007 J. Am. College Nutr. 26 613S |
[31] | Hazel P, Huppert J, Balasubramanian S, and Neidle S 2004 J. Am. Chem. Soc. 126 16405 |
[32] | Bugaut A and Balasubramanian S 2008 Biochemistry 47 689 |
[33] | Guédin A, Gros J, Alberti P, and Mergny J L 2010 Nucl. Acids Res. 38 7858 |
[34] | Huppert J L and Balasubramanian S 2007 Nucl. Acids Res. 35 406 |
[35] | Eddy J and Maizels N 2006 Nucl. Acids Res. 34 3887 |
[36] | You H J, Wu J Y, Shao F W, and Yan J 2015 J. Am. Chem. Soc. 137 2424 |
[37] | Agrawal P, Hatzakis E, Guo K X, Carver M, and Yang D Z 2013 Nucl. Acids Res. 41 10584 |
[38] | De Armond R, Wood S, Sun D Y, Hurley L H, and Ebbinghaus S W 2005 Biochemistry 44 16341 |
[39] | Hsu S T D, Varnai P, Bugaut A, Reszka A P, Neidle S, and Balasubramanian S 2009 J. Am. Chem. Soc. 131 13399 |
[40] | Chen Y and Yang D 2012 Current Protocols in Nucleic Acid Chemistry 17 17.5 |
[41] | Rhodes D and Lipps H J 2015 Nucl. Acids Res. 43 8627 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|