Chin. Phys. Lett.  2023, Vol. 40 Issue (12): 128201    DOI: 10.1088/0256-307X/40/12/128201
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Performance Improvement of a Direct Carbon Fuel Cell through an Irreversible Vacuum Thermionic Generator
Yuan Wang1 and Shanhe Su2*
1Henan Engineering Technology Research Center of Energy Conversion and Storage Materials, Henan University of Engineering, Zhengzhou 451191, China
2Department of Physics, Xiamen University, Xiamen 361005, China
Cite this article:   
Yuan Wang and Shanhe Su 2023 Chin. Phys. Lett. 40 128201
Download: PDF(1933KB)   PDF(mobile)(1967KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A novel hybrid system consisting of a direct carbon fuel cell (DCFC), a thermionic generator (TIG), and a regenerator is developed to recover the exhaust heat from the fuel cell. Expressions for the power output and efficiency of subsystems and the hybrid system are derived. Based on the energy balance equation, the area matching problem between the DCFC and the TIG is discussed and solved. By considering the main irreversibilities, the influences of the DCFC's current density and the TIG's voltage on the performance of the hybrid system are revealed. The maximum power output density and the corresponding efficiency of the hybrid system are, respectively, equal to 379 W/m$^{2}$ and 36%. To enhance the maximum power density of the single DCFC, the optimal regions of the main parameters are determined.
Received: 30 July 2023      Published: 09 December 2023
PACS:  82.47.-a (Applied electrochemistry)  
  52.75.Fk (Magnetohydrodynamic generators and thermionic convertors; plasma diodes)  
  42.82.Fv (Hybrid systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/12/128201       OR      https://cpl.iphy.ac.cn/Y2023/V40/I12/128201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yuan Wang and Shanhe Su
[1] Cao D X, Sun Y, and Wang G L 2007 J. Power Sources 167 250
[2] Xu Q D, Guo Z J, Xia L C, He Q J, Li Z, Bello I T, Zheng K Q, and Ni M 2022 Energy Convers. Manage. 253 115175
[3] Jiang C R, Ma J J, Corre G, Jain S L, and Irvine J T S 2017 Chem. Soc. Rev. 46 2889
[4] İnci M 2022 Sustain. Energy Technol. Assess. 53 102739
[5] Liu R Z, Zhao C H, Li J L, Zeng F R, Wang S R, Wen T L, and Wen Z Y 2010 J. Power Sources 195 480
[6] Li C, Shi Y X, and Cai N S 2011 J. Power Sources 196 754
[7] Xie Y M, Tang Y B, and Liu J 2013 J. Solid State Electrochem. 17 121
[8] Elleuch A, Boussetta A, and Halouani K 2012 J. Electroanal. Chem. 668 99
[9] Hemmes K, Houwing M, and Woudstra N 2010 J. Fuel Cell Sci. Technol. 7 051008
[10] Kacprzak A, Kobylecki R, and Bis Z 2013 J. Power Sources 239 409
[11] Nunoura T, Dowaki K, Fushimi C, Allen S, Mészáros E, and Antal M J 2007 Ind. Eng. Chem. Res. 46 734
[12] Giddey S, Badwal S P S, Kulkarni A, and Munnings C 2012 Prog. Energy Combust. Sci. 38 360
[13] Vutetakis D G, Skidmore D R, and Byker H J 1987 J. Electrochem. Soc. 134 3027
[14] Cherepy N J, Krueger R, Fiet K J, Jankowski A F, and Cooper J F 2005 J. Electrochem. Soc. 152 A80
[15] Watanabe H, Kimura A, and Okazaki K 2016 Energy & Fuels 30 1835
[16] Kulkarni A, Ciacchi F T, Giddey S, Munnings C, Badwal S P S, Kimpton J A, and Fini D 2012 Int. J. Hydrogen Energy 37 19092
[17] Giddey S, Kulkarni A, Munnings C, and Badwal S P S 2014 Energy 68 538
[18] Kulkarni A, Giddey S, and Badwal S P S 2011 Solid State Ionics 194 46
[19] Xu H R, Chen B, Zhang H C, Tan P, Yang G M, Irvine J T S, and Ni M 2018 J. Power Sources 382 135
[20] Xu H R, Chen B, Tan P, Zhang H C, Yuan J L, Irvine J T S, and Ni M 2018 Energy Convers. Manage. 165 761
[21] Xu H R, Chen B, Tan P, Cai W Z, Wu Y Y, Zhang H C, and Ni M 2018 Appl. Energy 226 881
[22] Liu Q H, Tian Y, Xia C, Thompson L T, Liang B, and Li Y D 2008 J. Power Sources 185 1022
[23] Eom S, Ahn S, Kang K, and Choi G 2017 J. Power Sources 372 54
[24] Xu H R, Chen B, Zhang H C, Sun Q, Yang G M, and Ni M 2017 Int. J. Hydrogen Energy 42 15641
[25] Steinberg M 2006 Int. J. Hydrogen Energy 31 405
[26] Zhang H C, Chen L W, Zhang J J, and Chen J C2014 Energy 68 292
[27] Dimitrova Z and Maréchal F 2017 Renewable Energy 112 124
[28] Bellomare F and Rokni M 2013 Renewable Energy 55 490
[29] Wang R Z, Li G Q, Ma Y Y, Wang T P, Chen B, Wei T, and Dong D H 2023 Int. J. Hydrogen Energy 48 9797
[30] Wang Y, Su S H, Lin B H, and Chen J C 2013 J. Appl. Phys. 114 053502
[31] Wang Y, Cai L, Liu T, Wang J, and Chen J 2015 Energy 93 Part 1 900
[32] Huang C K, Pan Y Z, Wang Y, Su G Z, and Chen J C 2016 Energy Convers. Manage. 121 186
[33] Abraham K and Gideon S 2016 J. Opt. 18 073001
[34] Olawole O C and De D K 2018 J. Photonics Energy 8 018001
[35] Zhang P, Ang Y S, Garner A L, Valfells Á, Luginsland J W, and Ang L K 2021 J. Appl. Phys. 129 100902
[36] Zhang P, Valfells Á, Ang L K, Luginsland J W, and Lau Y Y 2017 Appl. Phys. Rev. 4 011304
[37] Zhang H C, Xu H R, Chen B, Dong F F, and Ni M 2017 Energy 132 280
[38] Khalid K A A, Leong T J, and Mohamed K 2016 IEEE Trans. Electron Devices 63 2231
[39] Zhao M Z, Zhang H C, Hu Z Y, Zhang Z F, and Zhang J J 2015 Energy Convers. Manage. 89 683
[40] Dushman S 1923 Phys. Rev. 21 623
[41] Richardson O W 1912 Dublin Philos. Mag. J. Sci. 23 594
Related articles from Frontiers Journals
[1] Qingyu Dong, Ruowei Yi, Jizhen Qi, Yanbin Shen, and Liwei Chen. Probing the Air Storage Failure Mechanism of Ni-Rich Layered Cathode Materials[J]. Chin. Phys. Lett., 2022, 39(3): 128201
Viewed
Full text


Abstract