Chin. Phys. Lett.  2023, Vol. 40 Issue (11): 118101    DOI: 10.1088/0256-307X/40/11/118101
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Magneto-Orientated Graphite Double-Layer Homo-Structure with Broadband Microwave Absorption
Jun-Song Wang1,2, Wei Ding3*, Cheng-Hong Zhang1,2, Kang Qiu1,3, You-Lin Gao1,3, Mian-Ke Chen1,3, Muhammad Adnan Aslam4, Mahmoud A. Khalifa1, Jia-Liang Luo1, Jun Fang1*, and Zhi-Gao Sheng1*
1High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
2University of Science and Technology of China, Hefei 230026, China
3Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
4Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
Cite this article:   
Jun-Song Wang, Wei Ding, Cheng-Hong Zhang et al  2023 Chin. Phys. Lett. 40 118101
Download: PDF(8545KB)   PDF(mobile)(9651KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We utilized magnetic fields as an efficient tool to manipulate the orientation and electromagnetic properties of graphite micro-flakes (GMFs). As a result, we successfully developed a GMF double-layer homo-structure, which shows excellent electromagnetic absorption properties. By tuning the direction of a small magnetic field (850 G), vertical and horizontal aligned GMFs are produced. Their electromagnetic parameters are effectively tailored by this magneto-orientation effect, and the vertical and horizontal aligned GMFs achieve good results in terms of impedance matching and microwave absorption. With the combination of these two magneto-orientated layers, vertically oriented as the surficial impedance matching layer and horizontally oriented as the inner loss layer, we design a GMF-based double-layer homo-structure. After thickness optimization, $-38.2$ dB minimum reflection loss and 6.4 GHz (11.6–18.0 GHz) absorption bandwidth are achieved. Our findings further emphasize the importance of material orientation freedom and provide a magneto-strategy to design multiple-layer structures and to produce high-performance microwave devices.
Received: 27 August 2023      Published: 13 November 2023
PACS:  77.84.-s (Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)  
  75.30.Gw (Magnetic anisotropy)  
  73.21.Ac (Multilayers)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/11/118101       OR      https://cpl.iphy.ac.cn/Y2023/V40/I11/118101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jun-Song Wang
Wei Ding
Cheng-Hong Zhang
Kang Qiu
You-Lin Gao
Mian-Ke Chen
Muhammad Adnan Aslam
Mahmoud A. Khalifa
Jia-Liang Luo
Jun Fang
and Zhi-Gao Sheng
[1] Huang H L, Xia H, Guo Z B, Chen Y, and Li H J 2017 Chin. Phys. B 26 025207
[2] Wang Y, He D W, and Wang Y S 2021 Chin. Phys. B 30 067804
[3] Liu Y, Li R, Jia Y, and He Z X 2020 Chin. Phys. B 29 067701
[4] Dai M W, Zhai Y H, Wu L, and Zhang Y 2019 Carbon 152 661
[5] Zeng X J, Zhao C, Yin Y C, Nie T L, Xie N, Yu R, and Stucky G 2022 Carbon 193 26
[6] Iqbal A, Shahzad F, Hantanasirisakul K, Kim M, Kwon J, Hong J, Kim H, Kim D, Gogotsi Y, and Koo C 2020 Science 369 446
[7] Ling A, Tan G G, Man Q K, Lou Y X, Chen S W, Gu X S, Li R W, Pan J, and Liu X C 2019 Compos. Part B 171 214
[8] Yan F, Guo D, Zhang S, Li C Y, Zhu C L, Zhang X T, and Chen Y J 2018 Nanoscale 10 2697
[9] Wang W J, Zang C G, and Jiao Q J 2013 Chin. Phys. B 22 128101
[10] Liu P B, Huang Y, Yan J, Yang Y W, and Zhao Y 2016 ACS Appl. Mater. & Interfaces 8 5536
[11] Li G, Xie T S, Yang S L, Jin J H, and Jiang J M 2012 J. Phys. Chem. C 116 9196
[12] Gang Q, Niaz M A, and Boudaghi R 2021 J. Magn. Magn. Mater. 537 168181
[13] Dong J, Zhou W C, Qing Y C, Gao L, Duan S C, Luo F, and Zhou D M 2018 Ceram. Int. 44 14007
[14] Li Y G, Wu X, Chen J B, Cao A X, Boudaghi R, and Niaz M A 2021 Ceram. Int. 47 19538
[15] Sun X X, Yang M L, Yang S, Wang S S, Yin W L, Che R C, and Li Y B 2019 Small 15 1902974
[16] Wang J H, Wing S, and Tan J 2018 Mater. & Des. 153 190
[17] Qiu K, Hassan A, Wang J S, Zhang C H, Gao Y L, Khalifa A M, Ding W, Kong X K, Liu Q C, and Sheng Z G 2023 J. Mater. Res. Technol. 22 2328
[18] Gu W H, Sheng J Q, Huang Q Q, Wang G H, Chen J B, and Ji G B 2021 Nano-Micro Lett. 13 102
[19] Tulić S, Waitz T, Čaplovičová M, Habler G, Vretenár V, Susi T, and Skákalová V 2021 Carbon 185 300
[20] Chung S H, Kim H Y, and Jeong S W 2018 Carbon 140 24
[21] Lin F, Yang G, Niu C, Wang Y N, Zhu Z, Luo H K, Dai C, Mayerich D, Hu Y D, Hu J, Zhou X F, Liu Z P, Wang Z M, and Bao J M 2018 Adv. Funct. Mater. 28 1805255
[22] Tian B, Lin W Y, Zhuang P P, Li J Z, Shih T M, and Cai W W 2018 Carbon 131 66
[23] Boden A, Boerner B, Kusch P, Firkowska I, and Reich S 2014 Nano Lett. 14 3640
[24] Zhou T Z, Yu Y Z, He B, Wang Z, Xiong T, Wang Z X, Liu Y T, Xin J W, Qi M, Zhang H Z, Zhou X H, Gao L H, Cheng Q F, and Wei L 2022 Nat. Commun. 13 4564
[25] Yang X F, Fan B X, Tang X, Wang J L, Tong G X, Chen D B, and Guan J G 2022 Chem. Eng. J. 430 132747
[26] Wang X X, You F F, Wen X Y, Wang K R, Tong G X, and Wu W H 2022 Chem. Eng. J. 445 136431
[27] Yang X F, Liu M M, Lan Y Q, Wu L S, Ji R, Tong G X, Gong P J, and Wu W H 2021 Chem. Eng. J. 426 130779
[28] Wang X X, Wei H Y, Wen X Y, Xia W X, Tong G X, Liu M M, and Wu W H 2021 J. Alloys Compd. 879 160486
[29] Liu M M, Yang X F, Shao W, Wu T, Ji R, Fan B X, and Tong G X 2021 Carbon 174 625
[30] Lu Y, Shao W, Wu L W, Liu L, Tong G X, and Wu W H 2020 J. Alloys Compd. 847 156509
[31] Yang X F, Fu K, Wu L S, Tang X, Wang J L, Tong G X, Chen D B, and Wu W H 2022 Carbon 199 1
[32] Xing L, Xia H X, Shen K J, He C C, Yang Y J, Tong G X, Wu T, and Wu W H 2023 Carbon 215 118433
[33] Liu M M, Wu L W, Fan B X, Tong G X, Chen D B, and Wu W H 2022 Appl. Surf. Sci. 571 151273
[34] Fan B X, Xing L, Yang K X, Zhou F J, He Q M, Tong G X, and Wu W H 2023 Chem. Eng. J. 451 138492
[35] Xing L, Chen Y B, Yang Y J, He C C, Wu T, Xia H X, Shen K J, Tong G X, and Wu W H 2023 Chem. Eng. J. 469 143952
[36] Wang X X, You F F, Yao Q B, Wang K R, Liao Y, Tong G X, Wang X J, Wu T, and Wu W H 2023 Mater. Horiz. 10 2677
[37] You F F, Liu X Y, Ying M W, Yang Y J, Ke Y T, Shen Y, Tong G X, and Wu W H 2023 Mater. Horiz. 10 4609
[38] Deng K X, Wu H H, Li Y, Jiang J T, Wang M, Yang Z H, and Zhang R J 2023 J. Alloys Compd. 943 169120
[39] Stanley J S, Logesh G, Ariraman M, Srishilan C, Sindam B, Raju K C, and Mandhakini M 2023 Diamond Relat. Mater. 132 109625
[40] Qiao Y J, Yao Z D, Li Q W, Ji Y, Li Z N, Zheng T, Zhang X H, and Wang X D 2021 Compos. Part A 150 106626
[41] Zhang X, Liu Z C, Deng B W, Cai L, Dong Y Y, Zhu X J, and Lu W 2021 Chem. Eng. J. 419 129547
[42] Zhang D F, Hao Z F, Qian Y N, Zeng B, Zhu H P, Wu Q B, Yan C J, and Chen M Y 2018 Appl. Phys. A 124 374
[43] Rusly S N A, Matori K A, Ismail I, Abbas Z, Awang Z, Zulkimi M M M, Idris F M, Zaid M H M, and Zulfikri N D 2018 J. Mater. Sci.: Mater. Electron. 29 14031
[44] Zhao T K, Jin W B, Ji X L, Yan H B, Jiang Y T, Dong Y, Yang Y L, Dang A L, Li H, Li T H, Shang S M, and Zhou Z F 2017 J. Alloys Compd. 712 59
[45] Cai W H, Elveny M, and Akhtar M N 2021 J. Magn. Magn. Mater. 539 168385
[46] Liu P J, Ng V M H, Yao Z J, Zhou J T, Lei Y M, Yang Z H, and Kong M B 2017 J. Alloys Compd. 701 841
[47] Ye F, Song C Q, Zhou Q, Yin X W, Han M K, Li X L, Zhang L T, and Cheng L F 2018 Materials 11 1771
Related articles from Frontiers Journals
[1] Hao-Chen Wang, Zhi-Hao Wang, Xuan-Yan Chen, Su-Huai Wei, Wenguang Zhu, and Xie Zhang. Competition between Stepwise Polarization Switching and Chirality Coupling in Ferroelectric GeS Nanotubes[J]. Chin. Phys. Lett., 2023, 40(4): 118101
[2] Yali Yang, Laurent Bellaiche, and Hongjun Xiang. Ferroelectricity in Charge-Ordering Crystals with Centrosymmetric Lattices[J]. Chin. Phys. Lett., 2022, 39(9): 118101
[3] Qian Ye, Yu-Hao Shen, and Chun-Gang Duan. Ferroelectric Controlled Spin Texture in Two-Dimensional NbOI$_{2}$ Monolayer[J]. Chin. Phys. Lett., 2021, 38(8): 118101
[4] Wei Zhao, Zhengqian Fu, Jianming Deng, Song Li, Yifeng Han, Man-Rong Li, Xueyun Wang, and Jiawang Hong. Observation of Ferroelastic and Ferroelectric Domains in AgNbO$_{3}$ Single Crystal[J]. Chin. Phys. Lett., 2021, 38(3): 118101
[5] Qunfei Zheng, Qiang Li, Saidong Xue, Yanhui Wu, Lijuan Wang, Qian Zhang, Xiaomei Qin, Xiangyong Zhao, Feifei Wang, and Wenge Yang. Pressure Driven Structural Evolutions of 0.935(Na$_{0.5}$Bi$_{0.5}$)TiO$_{3}$-0.065BaTiO$_{3}$ Lead-Free Ferroelectric Single Crystal through Raman Spectroscopy[J]. Chin. Phys. Lett., 2021, 38(2): 118101
[6] Qiang-zhong Wang, Gang Wang, Fa-xin Li. Precise, Long-Time Displacement Self-Sensing of Piezoelectric Cantilever Actuators Based on Charge Measurement Using the Sawyer–Tower Circuit[J]. Chin. Phys. Lett., 2018, 35(10): 118101
[7] Hui-Zhen Guo, An-Quan Jiang. Thickness Effect on (La$_{0.26}$Bi$_{0.74}$)$_{2}$Ti$_{4}$O$_{11}$ Thin-Film Composition and Electrical Properties[J]. Chin. Phys. Lett., 2018, 35(2): 118101
[8] Jing Shi, Yong Gao, Xiao-Li Wang, Si-Ning Yun. Electronic, Elastic and Piezoelectric Properties of Two-Dimensional Group-IV Buckled Monolayers[J]. Chin. Phys. Lett., 2017, 34(8): 118101
[9] Shuai-Qi Xu, Yan Zhang, Hui-Zhen Guo, Wen-Ping Geng, Zi-Long Bai, An-Quan Jiang. Improved Polarization Retention of BiFeO$_{3}$ Thin Films Using GdScO$_{3}$ (110) Substrates[J]. Chin. Phys. Lett., 2017, 34(2): 118101
[10] WU Dong-Xu, CHENG Hong-Bin, ZHENG Xue-Jun, WANG Xian-Ying, WANG Ding, LI Jia. Fabrication and Piezoelectric Characterization of Single Crystalline GaN Nanobelts[J]. Chin. Phys. Lett., 2015, 32(10): 118101
[11] LENG Sen-Lin, SHI Wei, LI Guo-Rong, ZHENG Liao-Ying. Potential Barrier Behavior of BaTiO3–(Bi0.5Na0.5)TiO3 Positive Temperature Coefficient of Resistivity Ceramic[J]. Chin. Phys. Lett., 2015, 32(4): 118101
[12] LIU Chang, YU Wen-Jie, ZHANG Bo, XUE Zhong-Ying, WU Wang-Ran, ZHAO Yi, ZHAO Qing-Tai. Equivalent Trap Energy Level Extraction for SiGe Using Gate-Induced-Drain-Leakage Current Analysis[J]. Chin. Phys. Lett., 2014, 31(10): 118101
[13] HUANG Nai-Xing, LÜ Tian-Quan, ZHANG Rui, WANG Yu-Ling, CAO Wen-Wu. Guided Wave Propagation in a Gold Electrode Film on a Pb(Mg1/3Nb2/3)O3–33%PbTiO3 Ferroelectric Single Crystal Substrate[J]. Chin. Phys. Lett., 2014, 31(10): 118101
[14] RAO Wei, WANG Yun-Bo, WANG Ye-An, GAO Jun-Xiong, ZHOU Wen-Li, YU Jun. Magnetostatic Coupling in Ba0.8Sr0.2TiO3/CoFe2O4 Magnetoelectric Composite Thin Films of 2-2-Type Structure[J]. Chin. Phys. Lett., 2014, 31(1): 118101
[15] YU Wen-Jie, ZHANG Bo, LIU Chang, XUE Zhong-Ying, CHEN Ming, ZHAO Qing-Tai. Mobility Enhancement and Gate-Induced-Drain-Leakage Analysis of Strained-SiGe Channel p-MOSFETs with Higher-κ LaLuO3 Gate Dielectric[J]. Chin. Phys. Lett., 2014, 31(1): 118101
Viewed
Full text


Abstract