CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Magneto-Orientated Graphite Double-Layer Homo-Structure with Broadband Microwave Absorption |
Jun-Song Wang1,2, Wei Ding3*, Cheng-Hong Zhang1,2, Kang Qiu1,3, You-Lin Gao1,3, Mian-Ke Chen1,3, Muhammad Adnan Aslam4, Mahmoud A. Khalifa1, Jia-Liang Luo1, Jun Fang1*, and Zhi-Gao Sheng1* |
1High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China 2University of Science and Technology of China, Hefei 230026, China 3Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China 4Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
|
|
Cite this article: |
Jun-Song Wang, Wei Ding, Cheng-Hong Zhang et al 2023 Chin. Phys. Lett. 40 118101 |
|
|
Abstract We utilized magnetic fields as an efficient tool to manipulate the orientation and electromagnetic properties of graphite micro-flakes (GMFs). As a result, we successfully developed a GMF double-layer homo-structure, which shows excellent electromagnetic absorption properties. By tuning the direction of a small magnetic field (850 G), vertical and horizontal aligned GMFs are produced. Their electromagnetic parameters are effectively tailored by this magneto-orientation effect, and the vertical and horizontal aligned GMFs achieve good results in terms of impedance matching and microwave absorption. With the combination of these two magneto-orientated layers, vertically oriented as the surficial impedance matching layer and horizontally oriented as the inner loss layer, we design a GMF-based double-layer homo-structure. After thickness optimization, $-38.2$ dB minimum reflection loss and 6.4 GHz (11.6–18.0 GHz) absorption bandwidth are achieved. Our findings further emphasize the importance of material orientation freedom and provide a magneto-strategy to design multiple-layer structures and to produce high-performance microwave devices.
|
|
Received: 27 August 2023
Published: 13 November 2023
|
|
PACS: |
77.84.-s
|
(Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)
|
|
75.30.Gw
|
(Magnetic anisotropy)
|
|
73.21.Ac
|
(Multilayers)
|
|
78.67.Pt
|
(Multilayers; superlattices; photonic structures; metamaterials)
|
|
|
|
|
[1] | Huang H L, Xia H, Guo Z B, Chen Y, and Li H J 2017 Chin. Phys. B 26 025207 |
[2] | Wang Y, He D W, and Wang Y S 2021 Chin. Phys. B 30 067804 |
[3] | Liu Y, Li R, Jia Y, and He Z X 2020 Chin. Phys. B 29 067701 |
[4] | Dai M W, Zhai Y H, Wu L, and Zhang Y 2019 Carbon 152 661 |
[5] | Zeng X J, Zhao C, Yin Y C, Nie T L, Xie N, Yu R, and Stucky G 2022 Carbon 193 26 |
[6] | Iqbal A, Shahzad F, Hantanasirisakul K, Kim M, Kwon J, Hong J, Kim H, Kim D, Gogotsi Y, and Koo C 2020 Science 369 446 |
[7] | Ling A, Tan G G, Man Q K, Lou Y X, Chen S W, Gu X S, Li R W, Pan J, and Liu X C 2019 Compos. Part B 171 214 |
[8] | Yan F, Guo D, Zhang S, Li C Y, Zhu C L, Zhang X T, and Chen Y J 2018 Nanoscale 10 2697 |
[9] | Wang W J, Zang C G, and Jiao Q J 2013 Chin. Phys. B 22 128101 |
[10] | Liu P B, Huang Y, Yan J, Yang Y W, and Zhao Y 2016 ACS Appl. Mater. & Interfaces 8 5536 |
[11] | Li G, Xie T S, Yang S L, Jin J H, and Jiang J M 2012 J. Phys. Chem. C 116 9196 |
[12] | Gang Q, Niaz M A, and Boudaghi R 2021 J. Magn. Magn. Mater. 537 168181 |
[13] | Dong J, Zhou W C, Qing Y C, Gao L, Duan S C, Luo F, and Zhou D M 2018 Ceram. Int. 44 14007 |
[14] | Li Y G, Wu X, Chen J B, Cao A X, Boudaghi R, and Niaz M A 2021 Ceram. Int. 47 19538 |
[15] | Sun X X, Yang M L, Yang S, Wang S S, Yin W L, Che R C, and Li Y B 2019 Small 15 1902974 |
[16] | Wang J H, Wing S, and Tan J 2018 Mater. & Des. 153 190 |
[17] | Qiu K, Hassan A, Wang J S, Zhang C H, Gao Y L, Khalifa A M, Ding W, Kong X K, Liu Q C, and Sheng Z G 2023 J. Mater. Res. Technol. 22 2328 |
[18] | Gu W H, Sheng J Q, Huang Q Q, Wang G H, Chen J B, and Ji G B 2021 Nano-Micro Lett. 13 102 |
[19] | Tulić S, Waitz T, Čaplovičová M, Habler G, Vretenár V, Susi T, and Skákalová V 2021 Carbon 185 300 |
[20] | Chung S H, Kim H Y, and Jeong S W 2018 Carbon 140 24 |
[21] | Lin F, Yang G, Niu C, Wang Y N, Zhu Z, Luo H K, Dai C, Mayerich D, Hu Y D, Hu J, Zhou X F, Liu Z P, Wang Z M, and Bao J M 2018 Adv. Funct. Mater. 28 1805255 |
[22] | Tian B, Lin W Y, Zhuang P P, Li J Z, Shih T M, and Cai W W 2018 Carbon 131 66 |
[23] | Boden A, Boerner B, Kusch P, Firkowska I, and Reich S 2014 Nano Lett. 14 3640 |
[24] | Zhou T Z, Yu Y Z, He B, Wang Z, Xiong T, Wang Z X, Liu Y T, Xin J W, Qi M, Zhang H Z, Zhou X H, Gao L H, Cheng Q F, and Wei L 2022 Nat. Commun. 13 4564 |
[25] | Yang X F, Fan B X, Tang X, Wang J L, Tong G X, Chen D B, and Guan J G 2022 Chem. Eng. J. 430 132747 |
[26] | Wang X X, You F F, Wen X Y, Wang K R, Tong G X, and Wu W H 2022 Chem. Eng. J. 445 136431 |
[27] | Yang X F, Liu M M, Lan Y Q, Wu L S, Ji R, Tong G X, Gong P J, and Wu W H 2021 Chem. Eng. J. 426 130779 |
[28] | Wang X X, Wei H Y, Wen X Y, Xia W X, Tong G X, Liu M M, and Wu W H 2021 J. Alloys Compd. 879 160486 |
[29] | Liu M M, Yang X F, Shao W, Wu T, Ji R, Fan B X, and Tong G X 2021 Carbon 174 625 |
[30] | Lu Y, Shao W, Wu L W, Liu L, Tong G X, and Wu W H 2020 J. Alloys Compd. 847 156509 |
[31] | Yang X F, Fu K, Wu L S, Tang X, Wang J L, Tong G X, Chen D B, and Wu W H 2022 Carbon 199 1 |
[32] | Xing L, Xia H X, Shen K J, He C C, Yang Y J, Tong G X, Wu T, and Wu W H 2023 Carbon 215 118433 |
[33] | Liu M M, Wu L W, Fan B X, Tong G X, Chen D B, and Wu W H 2022 Appl. Surf. Sci. 571 151273 |
[34] | Fan B X, Xing L, Yang K X, Zhou F J, He Q M, Tong G X, and Wu W H 2023 Chem. Eng. J. 451 138492 |
[35] | Xing L, Chen Y B, Yang Y J, He C C, Wu T, Xia H X, Shen K J, Tong G X, and Wu W H 2023 Chem. Eng. J. 469 143952 |
[36] | Wang X X, You F F, Yao Q B, Wang K R, Liao Y, Tong G X, Wang X J, Wu T, and Wu W H 2023 Mater. Horiz. 10 2677 |
[37] | You F F, Liu X Y, Ying M W, Yang Y J, Ke Y T, Shen Y, Tong G X, and Wu W H 2023 Mater. Horiz. 10 4609 |
[38] | Deng K X, Wu H H, Li Y, Jiang J T, Wang M, Yang Z H, and Zhang R J 2023 J. Alloys Compd. 943 169120 |
[39] | Stanley J S, Logesh G, Ariraman M, Srishilan C, Sindam B, Raju K C, and Mandhakini M 2023 Diamond Relat. Mater. 132 109625 |
[40] | Qiao Y J, Yao Z D, Li Q W, Ji Y, Li Z N, Zheng T, Zhang X H, and Wang X D 2021 Compos. Part A 150 106626 |
[41] | Zhang X, Liu Z C, Deng B W, Cai L, Dong Y Y, Zhu X J, and Lu W 2021 Chem. Eng. J. 419 129547 |
[42] | Zhang D F, Hao Z F, Qian Y N, Zeng B, Zhu H P, Wu Q B, Yan C J, and Chen M Y 2018 Appl. Phys. A 124 374 |
[43] | Rusly S N A, Matori K A, Ismail I, Abbas Z, Awang Z, Zulkimi M M M, Idris F M, Zaid M H M, and Zulfikri N D 2018 J. Mater. Sci.: Mater. Electron. 29 14031 |
[44] | Zhao T K, Jin W B, Ji X L, Yan H B, Jiang Y T, Dong Y, Yang Y L, Dang A L, Li H, Li T H, Shang S M, and Zhou Z F 2017 J. Alloys Compd. 712 59 |
[45] | Cai W H, Elveny M, and Akhtar M N 2021 J. Magn. Magn. Mater. 539 168385 |
[46] | Liu P J, Ng V M H, Yao Z J, Zhou J T, Lei Y M, Yang Z H, and Kong M B 2017 J. Alloys Compd. 701 841 |
[47] | Ye F, Song C Q, Zhou Q, Yin X W, Han M K, Li X L, Zhang L T, and Cheng L F 2018 Materials 11 1771 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|