Chin. Phys. Lett.  2024, Vol. 41 Issue (2): 028101    DOI: 10.1088/0256-307X/41/2/028101
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
High-Performance Organic Field-Effect Transistors Based on Two-Dimensional Vat Orange 3 Crystals
Ning Yan1,2, Zhiren Xiong1,2, Chengbing Qin2,3, and Xiaoxi Li1,2*
1State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
3State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
Cite this article:   
Ning Yan, Zhiren Xiong, Chengbing Qin et al  2024 Chin. Phys. Lett. 41 028101
Download: PDF(9287KB)   PDF(mobile)(9312KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The exploration and research of low-cost, environmentally friendly, and sustainable organic semiconductor materials are of immense significance in various fields, including electronics, optoelectronics, and energy conversion. Unfortunately, these semiconductors have almost poor charge transport properties, which range from $\sim$ $10^{-4}$ cm$^{2}\cdot$V$^{-1}\cdot$s$^{-1}$ to $\sim$ $10^{-2}$ cm$^{2}\cdot$V$^{-1}\cdot$s$^{-1}$. Vat orange 3, as one of these organic semiconductors, has great potential due to its highly conjugated structure. We obtain high-quality multilayered Vat orange 3 crystals with two-dimensional (2D) growth on h-BN surfaces with thickness of 10–100 nm using physical vapor transport. Raman's results confirm the stability of the chemical structure of Vat orange 3 during growth. Furthermore, by leveraging the structural advantages of 2D materials, an organic field-effect transistor with a 2D vdW vertical heterostructure is further realized with h-BN encapsulation and multilayered graphene contact electrodes, resulting in an excellent transistor performance with On/Off ratio of $10^{4}$ and high field-effect mobility of 0.14 cm$^{2}\cdot$V$^{-1}\cdot$s$^{-1}$. Our results show the great potential of Vat orange 3 with 2D structures in future nano-electronic applications. Furthermore, we showcase an approach that integrates organic semiconductors with 2D materials, aiming to offer new insights into the study of organic semiconductors.
Received: 15 November 2023      Published: 08 March 2024
PACS:  81.05.Fb (Organic semiconductors)  
  81.20.-n (Methods of materials synthesis and materials processing)  
  85.30.-z (Semiconductor devices)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/2/028101       OR      https://cpl.iphy.ac.cn/Y2024/V41/I2/028101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ning Yan
Zhiren Xiong
Chengbing Qin
and Xiaoxi Li
[1] Paterson A F, Singh S, Fallon K J, Hodsden T, Han Y, Schroeder B C, Bronstein H, Heeney M, McCulloch I, and Anthopoulos T D 2018 Adv. Mater. 30 1801079
[2] Kwon S, Kim J, Kim G, Yu K, Jo Y R, Kim B J, Kim J, Kang H, Park B, and Lee K 2015 Adv. Mater. 27 6870
[3] Yumusak C, Sariciftci N S, and Irimia-Vladu M 2020 Mater. Chem. Front. 4 3678
[4] Pfattner R, Mas-Torrent M, Bilotti I, Brillante A, Milita S, Liscio F, Biscarini F, Marszalek T, Ulanski J, Nosal A, Gazicki-Lipman M, Leufgen M, Schmidt G, Molenkamp L W, Laukhin V, Veciana J, and Rovira C 2010 Adv. Mater. 22 4198
[5] Chen M, Peng B Y, Sporea R A, Podzorov V, and Chan P K L 2022 Small Sci. 2 2100115
[6] Chen Y, Yan C, Dong J, Zhou W, Rosei F, Feng Y, and Wang L N 2021 Adv. Funct. Mater. 31 2104099
[7] Burch R R, Dong Y H, Fincher C, Goldfinger M, and Rouviere P E 2004 Synth. Met. 146 43
[8] Irimia-Vladu M, Głowacki E D, Troshin P A, Schwabegger G, Leonat L, Susarova D K, Krystal O, Ullah M, Kanbur Y, and Bodea M A 2012 Adv. Mater. 24 375
[9] Hou C Y and Chen X 2015 Mol. Phys. 113 521
[10] Irimia-Vladu M, Troshin P A, Reisinger M, Shmygleva L, Kanbur Y, Schwabegger G, Bodea M, Schwödiauer R, Mumyatov A, Fergus J W, Razumov V F, Sitter H, Sariciftci N S, and Bauer S 2010 Adv. Funct. Mater. 20 4069
[11] Glowacki E D, Leonat L, Voss G, Bodea M, Bozkurt Z, Irimia-Vladu M, Bauer S, and Sariciftci N S 2011 Proc. SPIE 8118 81180M
[12] Irimia-Vladu M, Troshin P A, Reisinger M, Schwabegger G, Ullah M, Schwoediauer R, Mumyatov A, Bodea M, Fergus J W, and Razumov V F 2010 Org. Electron. 11 1974
[13] Giguère J B, Verolet Q, and Morin J F 2013 Chem. - Eur. J. 19 372
[14] Morin J F 2017 J. Mater. Chem. C 5 12298
[15] Giguère J B, Sariciftci N S, and Morin J F 22015 J. Mater. Chem. C 3 601
[16] Liu Q, Wang Y, Arunagiri L, Khatib M, Manzhos S, Feron K, Bottle S E, Haick H, Yan H, Michinobu T, and Sonar P 2020 Mater. Adv. 1 3428
[17] Chen L, Xing F, Lin Q, Waqas A, Wang X, Baumgartner T, and He X 2023 Batteries Supercaps 6 e202200406
[18] Kratzer M, Matkovic A, and Teichert C 2019 J. Phys. D 52 383001
[19] Zhang Y H, Qiao J S, Gao S, Hu F R, He D W, Wu B, Yang Z Y, Xu B C, Li Y, Shi Y, Ji W, Wang P, Wang X, Xiao M, Xu H, Xu J B, and Wang X 2016 Phys. Rev. Lett. 116 016602
[20] Lee C H, Schiros T, Santos E J, Kim B, Yager K G, Kang S J, Lee S, Yu J, Watanabe K, and Taniguchi T 2014 Adv. Mater. 26 2812
[21] Matković A, Genser J, Lüftner D, Kratzer M, Gajić R, Puschnig P, and Teichert C 2016 Sci. Rep. 6 38519
[22] Reese C and Bao Z 2007 Mater. Today 10 20
[23] Jiang H and Kloc C 2013 MRS Bull. 38 28
[24] Virkar A A, Mannsfeld S, Bao Z, and Stingelin N 2010 Adv. Mater. 22 3857
[25]Markov I 2003 Growth and Epitaxy (Singapore: World Scientific)
[26] Li R J, Zhang X T, Dong H L, Li Q K, Shuai Z G, and Hu W P 2016 Adv. Mater. 28 1697
[27] Fernandes J D, Macedo W C, Vieira D H, Furini L N, and Alves N 2023 Thin Solid Films 772 139808
[28] Xu X, Qiao J, Sun B, Tao L, Zhao Y, Qin M, Lu X, Ji W, Chen Z, and Xu J 2020 ACS Appl. Electron. Mater. 2 2888
[29] Sharma A, Zhang L, Tollerud J O, Dong M, Zhu Y, Halbich R, Vogl T, Liang K, Nguyen H T, and Wang F 2020 Light: Sci. & Appl. 9 116
[30] Ito Y, Virkar A A, Mannsfeld S, Oh J H, Toney M, Locklin J, and Bao Z 2009 J. Am. Chem. Soc. 131 9396
[31] Li R J, Hu W P, Liu Y Q, and Zhu D B 2010 Acc. Chem. Res. 43 529
[32] Wang H W, Chen M L, Zhu M J, Wang Y N, Dong B J, Sun X D, Zhang X R, Cao S, Li X X, and Huang J Q 2019 Nat. Commun. 10 2302
[33] Shao Y J, Zhou J, Xu N, Chen J, Watanabe K, Taniguchi T, Shi Y, and Li S L 2023 Chin. Phys. Lett. 40 068501
[34]Leonat L, Sbarcea G, and Branzoi I V 2013 UPB Sci. Bull. Ser. B 75 111
[35] Chetyrkina M R, Talalaev F S, Kameneva L V, Kostyuk S V, and Troshin P A 2022 J. Mater. Chem. C 10 3224
[36] Irimia-Vladu M, Kanbur Y, Camaioni F, Coppola M E, Yumusak C, Irimia C V, Vlad A, Operamolla A, Farinola G M, and Suranna G P 2019 Chem. Mater. 31 6315
[37] Wang L, Meric I, Huang P Y, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L, Muller D, Guo J, Kim P, Hone J, Shepard K L, and Dean C R 2013 Science 342 614
Related articles from Frontiers Journals
[1] Sai Jiang, Lichao Peng, Xiaosong Du, Qinyong Dai, Jianhang Guo, Jianhui Gu, Jian Su, Ding Gu, Qijing Wang, Huafei Guo, Jianhua Qiu, and Yun Li. Large-Area Monolayer n-Type Molecular Semiconductors with Improved Thermal Stability and Charge Injection[J]. Chin. Phys. Lett., 2023, 40(3): 028101
[2] M. S. Zaini, M. A. Mohd Sarjidan, W. H. Abd. Majid. Determination of Traps' Density of State in OLEDs from Current–Voltage Analysis[J]. Chin. Phys. Lett., 2016, 33(01): 028101
[3] WANG Yong-Fan, QU Feng-Dong, ZHOU Jing-Ran, GUO Wen-Bin, DONG Wei, LIU Cai-Xia, RUAN Sheng-Ping. High Responsivity Organic Ultraviolet Photodetector Based on NPB Donor and C60 Acceptor[J]. Chin. Phys. Lett., 2015, 32(08): 028101
[4] Bushra Mohamed Omer. Effect of Valence Band Tail Width on the Open Circuit Voltage of P3HT:PCBM Bulk Heterojunction Solar Cell: AMPS-1D Simulation Study[J]. Chin. Phys. Lett., 2015, 32(08): 028101
[5] ZHAO Yu-Feng, LI Xin-Hua, SHI Tong-Fei, WANG Wen-Bo, ZHOU Bu-Kang, DUAN Hua-Hua, ZENG Xue-Song, LI Ning, WANG Yu-Qi. Synthesis and Photoluminescence Properties of GaAs Nanowires Grown on Fused Quartz Substrates[J]. Chin. Phys. Lett., 2014, 31(05): 028101
[6] ZHENG Rui, HUANG Wen-Bo, XU Wei, CAO Yong. Analysis of Intrinsic Degradation Mechanism in Organic Light-Emitting Diodes by Impedance Spectroscopy[J]. Chin. Phys. Lett., 2014, 31(2): 028101
[7] YANG De-Zhi, SUN Heng-Da, CHEN Jiang-Shan, MA Dong-Ge. High Current Transfer Ratio Organic Optocoupler Based on Tandem Organic Light-Emitting Diode as the Input Unit[J]. Chin. Phys. Lett., 2012, 29(11): 028101
[8] CHEN Zheng, DENG Zhen-Bo, ZHOU Mao-Yang, LÜ Zhao-Yue, DU Hai-Liang, ZOU Ye, YIN Yue-Hong, LUN Jian-Chao. A Poly-(3-Hexylthiophene) (P3HT)/[6,6]-Phenyl-C61-Butyric Acid Methyl Ester (PCBM) Bilayer Organic Solar Cell Fabricated by Airbrush Spray Deposition[J]. Chin. Phys. Lett., 2012, 29(7): 028101
[9] PAN Feng, QIAN Xian-Rui, HUANG Li-Zhen, WANG Hai-Bo, YAN Dong-Hang** . Significant Improvement of Organic Thin-Film Transistor Mobility Utilizing an Organic Heterojunction Buffer Layer[J]. Chin. Phys. Lett., 2011, 28(7): 028101
[10] Jaya Lohani, Manoj Gaur, Upendra Kumar, V. R. Balakrishnan, Harsh, S. V. Eswaran. Electrical Studies on Pentacene Thin Film Transistors with Different Channel Widths[J]. Chin. Phys. Lett., 2010, 27(4): 028101
Viewed
Full text


Abstract