CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
High-Performance Organic Field-Effect Transistors Based on Two-Dimensional Vat Orange 3 Crystals |
Ning Yan1,2, Zhiren Xiong1,2, Chengbing Qin2,3, and Xiaoxi Li1,2* |
1State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China 2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China 3State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
|
|
Cite this article: |
Ning Yan, Zhiren Xiong, Chengbing Qin et al 2024 Chin. Phys. Lett. 41 028101 |
|
|
Abstract The exploration and research of low-cost, environmentally friendly, and sustainable organic semiconductor materials are of immense significance in various fields, including electronics, optoelectronics, and energy conversion. Unfortunately, these semiconductors have almost poor charge transport properties, which range from $\sim$ $10^{-4}$ cm$^{2}\cdot$V$^{-1}\cdot$s$^{-1}$ to $\sim$ $10^{-2}$ cm$^{2}\cdot$V$^{-1}\cdot$s$^{-1}$. Vat orange 3, as one of these organic semiconductors, has great potential due to its highly conjugated structure. We obtain high-quality multilayered Vat orange 3 crystals with two-dimensional (2D) growth on h-BN surfaces with thickness of 10–100 nm using physical vapor transport. Raman's results confirm the stability of the chemical structure of Vat orange 3 during growth. Furthermore, by leveraging the structural advantages of 2D materials, an organic field-effect transistor with a 2D vdW vertical heterostructure is further realized with h-BN encapsulation and multilayered graphene contact electrodes, resulting in an excellent transistor performance with On/Off ratio of $10^{4}$ and high field-effect mobility of 0.14 cm$^{2}\cdot$V$^{-1}\cdot$s$^{-1}$. Our results show the great potential of Vat orange 3 with 2D structures in future nano-electronic applications. Furthermore, we showcase an approach that integrates organic semiconductors with 2D materials, aiming to offer new insights into the study of organic semiconductors.
|
|
Received: 15 November 2023
Published: 08 March 2024
|
|
PACS: |
81.05.Fb
|
(Organic semiconductors)
|
|
81.20.-n
|
(Methods of materials synthesis and materials processing)
|
|
85.30.-z
|
(Semiconductor devices)
|
|
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
|
|
|
[1] | Paterson A F, Singh S, Fallon K J, Hodsden T, Han Y, Schroeder B C, Bronstein H, Heeney M, McCulloch I, and Anthopoulos T D 2018 Adv. Mater. 30 1801079 |
[2] | Kwon S, Kim J, Kim G, Yu K, Jo Y R, Kim B J, Kim J, Kang H, Park B, and Lee K 2015 Adv. Mater. 27 6870 |
[3] | Yumusak C, Sariciftci N S, and Irimia-Vladu M 2020 Mater. Chem. Front. 4 3678 |
[4] | Pfattner R, Mas-Torrent M, Bilotti I, Brillante A, Milita S, Liscio F, Biscarini F, Marszalek T, Ulanski J, Nosal A, Gazicki-Lipman M, Leufgen M, Schmidt G, Molenkamp L W, Laukhin V, Veciana J, and Rovira C 2010 Adv. Mater. 22 4198 |
[5] | Chen M, Peng B Y, Sporea R A, Podzorov V, and Chan P K L 2022 Small Sci. 2 2100115 |
[6] | Chen Y, Yan C, Dong J, Zhou W, Rosei F, Feng Y, and Wang L N 2021 Adv. Funct. Mater. 31 2104099 |
[7] | Burch R R, Dong Y H, Fincher C, Goldfinger M, and Rouviere P E 2004 Synth. Met. 146 43 |
[8] | Irimia-Vladu M, Głowacki E D, Troshin P A, Schwabegger G, Leonat L, Susarova D K, Krystal O, Ullah M, Kanbur Y, and Bodea M A 2012 Adv. Mater. 24 375 |
[9] | Hou C Y and Chen X 2015 Mol. Phys. 113 521 |
[10] | Irimia-Vladu M, Troshin P A, Reisinger M, Shmygleva L, Kanbur Y, Schwabegger G, Bodea M, Schwödiauer R, Mumyatov A, Fergus J W, Razumov V F, Sitter H, Sariciftci N S, and Bauer S 2010 Adv. Funct. Mater. 20 4069 |
[11] | Glowacki E D, Leonat L, Voss G, Bodea M, Bozkurt Z, Irimia-Vladu M, Bauer S, and Sariciftci N S 2011 Proc. SPIE 8118 81180M |
[12] | Irimia-Vladu M, Troshin P A, Reisinger M, Schwabegger G, Ullah M, Schwoediauer R, Mumyatov A, Bodea M, Fergus J W, and Razumov V F 2010 Org. Electron. 11 1974 |
[13] | Giguère J B, Verolet Q, and Morin J F 2013 Chem. - Eur. J. 19 372 |
[14] | Morin J F 2017 J. Mater. Chem. C 5 12298 |
[15] | Giguère J B, Sariciftci N S, and Morin J F 22015 J. Mater. Chem. C 3 601 |
[16] | Liu Q, Wang Y, Arunagiri L, Khatib M, Manzhos S, Feron K, Bottle S E, Haick H, Yan H, Michinobu T, and Sonar P 2020 Mater. Adv. 1 3428 |
[17] | Chen L, Xing F, Lin Q, Waqas A, Wang X, Baumgartner T, and He X 2023 Batteries Supercaps 6 e202200406 |
[18] | Kratzer M, Matkovic A, and Teichert C 2019 J. Phys. D 52 383001 |
[19] | Zhang Y H, Qiao J S, Gao S, Hu F R, He D W, Wu B, Yang Z Y, Xu B C, Li Y, Shi Y, Ji W, Wang P, Wang X, Xiao M, Xu H, Xu J B, and Wang X 2016 Phys. Rev. Lett. 116 016602 |
[20] | Lee C H, Schiros T, Santos E J, Kim B, Yager K G, Kang S J, Lee S, Yu J, Watanabe K, and Taniguchi T 2014 Adv. Mater. 26 2812 |
[21] | Matković A, Genser J, Lüftner D, Kratzer M, Gajić R, Puschnig P, and Teichert C 2016 Sci. Rep. 6 38519 |
[22] | Reese C and Bao Z 2007 Mater. Today 10 20 |
[23] | Jiang H and Kloc C 2013 MRS Bull. 38 28 |
[24] | Virkar A A, Mannsfeld S, Bao Z, and Stingelin N 2010 Adv. Mater. 22 3857 |
[25] | Markov I 2003 Growth and Epitaxy (Singapore: World Scientific) |
[26] | Li R J, Zhang X T, Dong H L, Li Q K, Shuai Z G, and Hu W P 2016 Adv. Mater. 28 1697 |
[27] | Fernandes J D, Macedo W C, Vieira D H, Furini L N, and Alves N 2023 Thin Solid Films 772 139808 |
[28] | Xu X, Qiao J, Sun B, Tao L, Zhao Y, Qin M, Lu X, Ji W, Chen Z, and Xu J 2020 ACS Appl. Electron. Mater. 2 2888 |
[29] | Sharma A, Zhang L, Tollerud J O, Dong M, Zhu Y, Halbich R, Vogl T, Liang K, Nguyen H T, and Wang F 2020 Light: Sci. & Appl. 9 116 |
[30] | Ito Y, Virkar A A, Mannsfeld S, Oh J H, Toney M, Locklin J, and Bao Z 2009 J. Am. Chem. Soc. 131 9396 |
[31] | Li R J, Hu W P, Liu Y Q, and Zhu D B 2010 Acc. Chem. Res. 43 529 |
[32] | Wang H W, Chen M L, Zhu M J, Wang Y N, Dong B J, Sun X D, Zhang X R, Cao S, Li X X, and Huang J Q 2019 Nat. Commun. 10 2302 |
[33] | Shao Y J, Zhou J, Xu N, Chen J, Watanabe K, Taniguchi T, Shi Y, and Li S L 2023 Chin. Phys. Lett. 40 068501 |
[34] | Leonat L, Sbarcea G, and Branzoi I V 2013 UPB Sci. Bull. Ser. B 75 111 |
[35] | Chetyrkina M R, Talalaev F S, Kameneva L V, Kostyuk S V, and Troshin P A 2022 J. Mater. Chem. C 10 3224 |
[36] | Irimia-Vladu M, Kanbur Y, Camaioni F, Coppola M E, Yumusak C, Irimia C V, Vlad A, Operamolla A, Farinola G M, and Suranna G P 2019 Chem. Mater. 31 6315 |
[37] | Wang L, Meric I, Huang P Y, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L, Muller D, Guo J, Kim P, Hone J, Shepard K L, and Dean C R 2013 Science 342 614 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|