CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
MWCNT Doped Reverse-Mode Polymer Network Liquid Crystals with Frequency Response Property |
Jiajun Li1,2†, Dongchao Ji1†, Zhibo Zhang1,2*, Yanan Yang4, Ruicong Zhang1, Tianyu Wang2,3, Yumin Zhang1, Wenxin Cao1,2*, and Jiaqi Zhu1,2* |
1National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, China 2Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China 3School of Energy Science & Engineering, Harbin Institute of Technology, Harbin 150001, China 4Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials and Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
|
|
Cite this article: |
Jiajun Li, Dongchao Ji, Zhibo Zhang et al 2024 Chin. Phys. Lett. 41 038501 |
|
|
Abstract Polymer-liquid crystals (PLCs) are common materials for smart windows. However, PLC smart windows usually require high driving voltage to maintain transparency. We synthesized a novel PLC smart film by doping multi-wall carbon nanotubes (MWCNTs) into a reverse-mode polymer network liquid crystal (R-PNLC). It is found that doping MWCNTs could effectively reduce the threshold voltage ($V_{\rm th}$) of R-PNLC from 19.0 V to 8.4 V. Due to co-orientation between MWCNT and LC molecules, the doped R-PNLC is able to maintain a high transmittance of visible light ($\sim$ $80$%) without an applied electric field. We find that doping MWCNTs could change the frequency modulation property of R-PNLC. The doped R-PNLC exhibits a wider frequency modulation range up to 40000 Hz, while the frequency modulation of the undoped R-PNLC reached to a saturation at 23000 Hz. We also tested the electromagnetic interference (EMI) shielding efficiency of R-PNLC and find that the EMI shielding efficiency could be improved by doping only 0.01 wt% MWCNTs into the system. The total shielding effectiveness of 0.01 wt% MWCNT doped R-PNLC was up to 14.91 dB in the frequency band of 5.38–8.17 GHz. This study demonstrates that the films are potentially useful for low-energy-consumption smart windows with enhanced electromagnetic shielding capability.
|
|
Received: 09 January 2024
Published: 27 March 2024
|
|
PACS: |
61.30.Pq
|
(Microconfined liquid crystals: droplets, cylinders, randomly confined liquid crystals, polymer dispersed liquid crystals, and porous systems)
|
|
61.30.Vx
|
(Polymer liquid crystals)
|
|
85.60.Bt
|
(Optoelectronic device characterization, design, and modeling)
|
|
85.60.-q
|
(Optoelectronic devices)
|
|
|
|
|
[1] | Katariya-Jain A and Deshmukh R R 2022 J. Phys. Chem. Solids 160 110363 |
[2] | Hu X W, Zeng W J, Yang W M, Xiao L Q, De Haan L T, Zhao W, Li N, Shui L L, and Zhou G F 2019 Liq. Cryst. 46 185 |
[3] | Jiang Y F, Shin Y, and Yang D K 2019 Phys. Rev. Appl. 12 054037 |
[4] | Oh S W, Kim S H, Baek J M, and Yoon T H 2018 Adv. Sustain. Syst. 2 1700164 |
[5] | Radka B P, Lee K M, Godman N P, and White T J 2022 Soft Matter 18 3013 |
[6] | Lee K M, Bunning T J, White T J, McConney M E, and Godman N P 2021 Crystals 11 7 |
[7] | Gao S, Xu J, Cao J, Yao H, Ali S E, Abo-Dief H M, Alanazi A K, Lan C, Algadi H, and Zhai X 2023 Adv. Compos. Hybrid Mater. 6 116 |
[8] | Pagidi S, Manda R, Shin H S, Lee J, Lim Y J, Kim M, and Lee S H 2021 J. Mol. Liq. 322 114959 |
[9] | He Z Q, Yin K, and Wu S T 2020 Opt. Express 28 15294 |
[10] | Dierking I 2000 Adv. Mater. 12 167 |
[11] | Yan J, Fan X W, Liu Y F, Yu Y, and Li R Z 2022 Chin. Opt. Lett. 20 013301 |
[12] | Yangming Z and Yu W 1995 Chin. Phys. Lett. 12 408 |
[13] | Wang J, Meng C, Gu Q, Tseng M C, Tang S T, Kwok H S, Cheng J, and Zi Y 2020 ACS Nano 14 3630 |
[14] | Tang S T, Chiu H W, Tseng M C, and Kwok H S 2021 SID Symposium Digest of Technical Papers 52 78 |
[15] | Ishinabe T, Isa H, Shibata Y, and Fujikake H 2022 J. Inf. Disp. 23 69 |
[16] | Han C H, Eo H, Choi T H, Kim W S, and Oh S W 2022 Sci. Rep. 12 11384 |
[17] | Jamil M, Ahmad F, and Jeon Y 2011 Curr. Sci. 101 1544 |
[18] | Xiong Y, Han J, Wang Y, Wang Z L, and Sun Q 2022 Research 2022 98667378 |
[19] | Zhang M S, Li X S, Long Z H, Guo R C, Gao W H, Ma H M, and Sun Y B 2022 J. Mol. Liq. 363 119895 |
[20] | Saeed M H, Zhang S, Cao Y, Zhou L, Hu J, Muhammad I, Xiao J, Zhang L, and Yang H 2020 Molecules 25 5510 |
[21] | Rastogi A 2022 Int. J. Electr. Power & Energy Syst. 6 71 |
[22] | Zhao Y, Ji H, Lu M, Tao J, Ou Y, Wang Y, Chen Y, Huang Y, Wang J, and Mao Y 2022 Nanomaterials 12 3865 |
[23] | Zhang Z B, Zhang R C, Xu L G, Li J J, Yang L, Yang Y A, Bolshakov A, and Zhu J Q 2021 Dalton Trans. 50 10033 |
[24] | Russell J M, Oh S, LaRue I, Zhou O, and Samulski E T 2006 Thin Solid Films 509 53 |
[25] | Dierking I, Scalia G, Morales P, and LeClere D 2004 Adv. Mater. 16 865 |
[26] | Wu Y, Cao H, Duan M Y, Li E L, Wang H H, Yang Z, Wang D, and He W L 2018 Liq. Cryst. 45 1023 |
[27] | Shivaraja S J, Gupta R K, and Manjuladevi V 2022 J. Mol. Liq. 354 118905 |
[28] | Barathi Dassan E G, Rahman A A A, Abidin M S Z, and Akil H M 2020 Nanotechnol. Rev. 9 768 |
[29] | Liu S, Qin S, Jiang Y, Song P, and Wang H 2021 Compos. Part A 145 106376 |
[30] | Gulrez S K, Mohsin M A, Shaikh H, Anis A, Pulose A M, Yadav M K, Qua E H P, and Al-Zahrani S 2014 Polym. Compos. 35 900 |
[31] | Bhandari M, Wang J, Jang D, Nam I, and Huang B 2021 Sensors 21 7291 |
[32] | Jang D, Yoon H, Seo J, Park S, Kil T, and Lee H K 2021 Compos. Sci. Technol. 212 108866 |
[33] | Zhu X, Yan F, Li C, Qi L, Yuan H, Liu Y, Zhu C, and Chen Y 2021 Chin. Phys. Lett. 38 015201 |
[34] | Kazmi S J, Nadeem M, Warsi M A, Manzoor S, Shabbir B, and Hussain S 2022 J. Alloys Compd. 903 163938 |
[35] | Jang D, Yoon H, Seo J, Cho H J, Kim G M, Kim Y K, and Yang B 2022 J. Mater. Res. Technol. 18 1256 |
[36] | Tsonos C, Soin N, Tomara G, Yang B, Psarras G C, Kanapitsas A, and Siores E 2016 RSC Adv. 6 1919 |
[37] | Zhang Y L, Ma Z L, Ruan K P, and Gu J W 2022 Research 2022 9780290 |
[38] | Shim H, Lyu H K, Allabergenov B, Garbovskiy Y, Glushchenko A, and Choi B 2016 Liq. Cryst. 43 1390 |
[39] | Kumari A and Sinha A 2020 5th IEEE International Conference on Emerging Electronics (ICEE), 26–28 November 2020, New Delhi, India, p 1 |
[40] | Li Y N Q, Yang Z Y, Chen R, Mo L C, Li J L, Hu M, and Wu S T 2020 Polymers 12 2862 |
[41] | Zhang Z B, Bolshakov A, Han J C, Zhu J Q, and Yang K L 2023 ACS Appl. Mater. & Interfaces 15 14800 |
[42] | Liu S X, Li Y, Zhou P C, Chen Q, and Su Y K 2018 Opt. Express 26 3394 |
[43] | Li H, Xu J J, Ren Y X, Han R, Song H, Huang R, Wang X, Zhang L Y, Cao H, Zou C, and Yang H 2023 ACS Appl. Mater. & Interfaces 15 2228 |
[44] | Zhao R, Li X S, Wang K M, Huai H, Ma H, and Sun Y B 2021 Liq. Cryst. 48 1162 |
[45] | Dierking I, Scalia G, and Morales P 2005 J. Appl. Phys. 97 044309 |
[46] | Shivaraja S J, Sahai M, Gupta R K, and Manjuladevi V 2023 Opt. Mater. 137 113546 |
[47] | Katariya Jain A and Deshmukh R R 2019 Liq. Cryst. 46 1191 |
[48] | Meng X S, Li J, Lin Y Q, Liu X D, Zhao J W, Li G Q, Li D, and He Z H 2022 Liq. Cryst. 49 1612 |
[49] | Shriyan S K and Fontecchio A K 2010 Mol. Cryst. Liq. Cryst. 525 158 |
[50] | Scalia G, Lagerwall J P, Schymura S, Haluska M, Giesselmann F, and Roth S 2007 Phys. Status Solidi B 244 4212 |
[51] | Wu B G, Erdmann J H, and Doane J W 1989 Liq. Cryst. 5 1453 |
[52] | Zheng J H, Gui K, Zhang M H, Wang K N, Guo C H, and Zhuang S L 2013 J. Disp. Technol. 10 215 |
[53] | Iqbal A, Sambyal P, and Koo C M 2020 Adv. Funct. Mater. 30 2000883 |
[54] | Shukla V 2019 Nanoscale Adv. 1 1640 |
[55] | Yang Y L, Zuo Y, Feng L, Hou X J, Suo G Q, Ye X H, and Zhang L 2019 Mater. Lett. 256 126634 |
[56] | Zhou E Z, Xi J B, Guo Y, Liu Y J, Xu Z, Peng L, Gao W W, Ying J, Chen Z C, and Gao C 2018 Carbon 133 316 |
[57] | Al-Saleh M H 2015 Synth. Met. 205 78 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|