CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Quantum State-Resolved Nonadiabatic Dynamics of the H + NaF $\to$ Na + HF Reaction |
Ye Mao1, Hanghang Chen1, Zijiang Yang1, Bayaer Buren2*, and Maodu Chen1* |
1Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, China 2School of Science, Shenyang University of Technology, Shenyang 110870, China
|
|
Cite this article: |
Ye Mao, Hanghang Chen, Zijiang Yang et al 2024 Chin. Phys. Lett. 41 038201 |
|
|
Abstract The H + NaF reaction is investigated at the quantum state-resolved level using the time-dependent wave-packet method based on a set of accurate diabatic potential energy surfaces. Oscillatory structures in the total reaction probability indicate the presence of the short-lived intermediate complex, attributed to a shallow potential well and exothermicity. Ro-vibrational state-resolved integral cross sections reveal the inverted population distributions of the product. The HF product favors an angular distribution in the forward hemisphere of 30$^{\circ}$–$60^{\circ}$ within the collision energy range from the threshold to 0.50 eV, which is related to the nonlinear approach of the H atom to the NaF molecule. Quantum generalized deflection functions show that the low-$J$ partial waves contribute primarily to the backward scattering, while the high-$J$ partial waves govern the forward scattering. The correlation between the partial wave $J$ and the scattering angle $\vartheta$ proves that the reaction follows a predominant direct reaction mechanism.
|
|
Received: 09 January 2024
Published: 12 March 2024
|
|
PACS: |
82.20.-w
|
(Chemical kinetics and dynamics)
|
|
82.20.Gk
|
(Electronically non-adiabatic reactions)
|
|
82.30.-b
|
(Specific chemical reactions; reaction mechanisms)
|
|
34.50.-s
|
(Scattering of atoms and molecules)
|
|
|
|
|
[1] | Menéndez M, Garcia E, Jambrina P G, and Aoiz F J 2023 J. Phys. Chem. A 127 6924 |
[2] | Kumar S Y and Padmanaban R 2023 ChemPhysChem 24 e202200747 |
[3] | Liu N N and Loesch H 2010 J. Phys. Chem. A 114 3247 |
[4] | Xie T X, Shi Y, and Jin M X 2015 Chin. Phys. Lett. 32 098201 |
[5] | Garcia E, Jambrina P G, and Laganà A 2017 J. Phys. Chem. A 121 6349 |
[6] | Tan R S, Zhai H C, Gao F, and Lin S Y 2017 J. Chem. Phys. 146 164305 |
[7] | Yue X F, Fang J, Li J, Feng H R, Caridade P J S B, and Varandas A J C 2021 Chem. Phys. Lett. 780 138924 |
[8] | He D, Li H X, and Chen M D 2016 J. Chem. Phys. 145 234312 |
[9] | Xie C J, Liu X G, and Guo H 2018 Chem. Phys. 515 427 |
[10] | Plane J M C, Rajasekhar B, and Bartolotti L 1989 J. Chem. Phys. 91 6177 |
[11] | Heismann F and Loesch H J 1982 Chem. Phys. 64 43 |
[12] | Weiss P S, Mestdagh J M, Balko B A, and Lee Y T 1988 Chem. Phys. 126 93 |
[13] | Taylor E H and Datz S 1955 J. Chem. Phys. 23 1711 |
[14] | Bobbenkamp R, Paladini A, Russo A, Loesch H J, Menéndez M, Aoiz F J, and Werner H J 2005 J. Chem. Phys. 122 244304 |
[15] | Aoiz F J, Verdasco E, Rábanos V S, Menéndez M, and Stienkemeier F 2000 Phys. Chem. Chem. Phys. 2 541 |
[16] | Becker C H, Casavecchia P, Valentini J J, and Lee Y T 1980 J. Chem. Phys. 73 2833 |
[17] | Yue X F 2013 Chin. Phys. B 22 113401 |
[18] | Weck P F and Balakrishnan N 2005 J. Chem. Phys. 122 234310 |
[19] | Li H Z, Tan R S, and Hu M 2015 Chin. Phys. Lett. 32 083102 |
[20] | Guan Y F, Fu B N, and Zhang D H 2017 J. Chem. Phys. 147 224307 |
[21] | Aguado A, Lara M, and Roncero O 1997 J. Chem. Phys. 107 10085 |
[22] | Aguado A, Lara M, and Roncero O 1997 J. Chem. Phys. 106 1013 |
[23] | Bartoszek F E, Polanyi J C, and Sloan J J 1981 J. Chem. Phys. 74 3400 |
[24] | Chang X Y, Ehlich R, Piecuch P, and Polanyi J C 1997 Faraday Discuss. 108 411 |
[25] | Düren R, Lackschewitz U, Milošević S, and Waldapfel H J 1989 J. Chem. Soc. Faraday Tran. II 85 1017 |
[26] | Düren R, Lackschewitz U, Panknin H, and Schirawski N 1988 Chem. Phys. Lett. 143 45 |
[27] | Düren R, Lackschewitz U, and Milošević S 1988 Chem. Phys. 126 81 |
[28] | Yan W, Tan R S, and Lin S Y 2019 J. Phys. Chem. A 123 2601 |
[29] | Yan W, Tan R S, and Lin S Y 2019 Chem. Phys. Lett. 730 378 |
[30] | Yan W, Tan R S, and Lin S Y 2023 RSC Adv. 13 15506 |
[31] | Jasper A W, Hack M D, Truhlar D G, and Piecuch P 2001 J. Chem. Phys. 115 7945 |
[32] | Ferreira D C W, Gargano R, and Silva G M E 2006 Int. J. Quantum Chem. 106 2650 |
[33] | Garashchuk S and Rassolov V A 2007 Chem. Phys. Lett. 446 395 |
[34] | Blackwell B A, Polanyi J C, and Sloan J J 1978 Chem. Phys. 30 299 |
[35] | Buren B and Chen M D 2022 J. Phys. Chem. A 126 2453 |
[36] | Mao Y, Yang Z J, and Chen M D 2022 J. Phys. Chem. A 126 5574 |
[37] | Chen H H, Yang Z J, and Chen M D 2023 Phys. Chem. Chem. Phys. 25 22927 |
[38] | Zhao B, Han S, Malbon C L, Yarkony D R, and Guo H 2021 Nat. Chem. 13 909 |
[39] | Bai Y W, Yang Z J, Mao Y, and Chen M D 2023 Front. Phys. 18 31303 |
[40] | Light J C and Carrington T 2000 Adv. Chem. Phys. 114 263 |
[41] | Echave J and Clary D C 1992 Chem. Phys. Lett. 190 225 |
[42] | Feit M D, Fleck J A, and Steiger A 1982 J. Comput. Phys. 47 412 |
[43] | Zhang D H and Zhang J Z H 1994 J. Chem. Phys. 101 1146 |
[44] | Sun Z G, Lee S Y, and Zhang D H 2009 J. Phys. Chem. A 113 4145 |
[45] | Sun Z G, Guo H, and Zhang D H 2009 J. Chem. Phys. 130 174102 |
[46] | Sun Z G, Guo H, and Zhang D H 2010 J. Chem. Phys. 132 084112 |
[47] | Jambrina P G, Menéndez M, and Aoiz F J 2018 Chem. Sci. 9 4837 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|