摘要A ZnO layer with rather good crystalline quality (χmin=9.4%) is grown on a sapphire substrate by plasma enhanced chemical vapor deposition (PECVD). Rutherford backscattering (RBS)/channeling and high-resolution x-ray diffraction (XRD) are used to characterize the elastic strain in the ZnO epilayer. The tetragonal distortion is positive and depth dependent. It is highest near the interface and decreases towards the sample surface. By combining the results of RBS and XRD, the average elastic strains in the parallel and the perpendicular directions can be calculated to be 0.50% and −0.17%, respectively.
Abstract:A ZnO layer with rather good crystalline quality (χmin=9.4%) is grown on a sapphire substrate by plasma enhanced chemical vapor deposition (PECVD). Rutherford backscattering (RBS)/channeling and high-resolution x-ray diffraction (XRD) are used to characterize the elastic strain in the ZnO epilayer. The tetragonal distortion is positive and depth dependent. It is highest near the interface and decreases towards the sample surface. By combining the results of RBS and XRD, the average elastic strains in the parallel and the perpendicular directions can be calculated to be 0.50% and −0.17%, respectively.
DING Bin-Feng**. Characterization of a ZnO Epilayer Grown on Sapphire by using Rutherford Backscattering/Channeling and X-Ray Diffraction[J]. 中国物理快报, 2012, 29(3): 38201-038201.
DING Bin-Feng. Characterization of a ZnO Epilayer Grown on Sapphire by using Rutherford Backscattering/Channeling and X-Ray Diffraction. Chin. Phys. Lett., 2012, 29(3): 38201-038201.
[1] Vispute R D et al 1998 Appl. Phys. Lett. 73 348
[2] Chen Y F et al 2000 Mater. Sci. Eng. B 75 190
[3] Look D C 2001 Mater. Sci. Eng. B 80 383
[4] Ohtomo A, Kawasaki H, Sakurai Y, Ohkubo I, Shiroki R, Yoshida Y, Yasuda T, Segawa Y and Koinuma H 1998 Mater. Sci. Eng. B 56 263
[5] Bagnall D M, Chen Y F, Zhu Z, Yao T, Koyama S, Shen M Y and Goto T 1997 Appl. Phys. Lett. 70 2230
[6] Segawa Y, Ohtomo A, Kawasaki M, Koinuma H, Tang Z K, Yu P and Wong G K L 1997 Phys. Stat. Sol. B 202 669
[7] Chen Yefan, Bagnall D M, Koh Hang jun, Park Kitae, Hiraga Kenji, Zhu Ziqiang and Yao Takafumi 1998 J. Appl. Phys. 84 3912
[8] Li B S, Liu Y C, Chu Z S, Shen D Z, Lu Y M, Zhang J Y and Fan X W 2002 J. Appl. Phys. 91 501
[9] Ye J D, Gu S L, Zhu S M, Chen T, Hu L Q, Qin F, Zhang R, Shi Y and Zheng Y D 2002 J. Cryst. Growth 243 151
[10] Muthukumar S, Zhong J, Chen Y, Lu Y and Siegrist T 2003 Appl. Phys. Lett. 82 742
[11] Makino T, Yasuda T, Segawa Y, Ohtomo A, Tamura K, Kawasaki M and Koinuma H 2001 Appl. Phys. Lett. 79 1282
[12] Kim K K, Song J H, Jung H J, Choi W K, Park S J, Song J H and Lee J Y 2000 J. Vac. Sci. Technol. A 18 2864
[13] Chu W K, Mayer J W and Nicolet M A 1978 Backscattering Spectrometry (New York: Academic) p 133
[14] Doolittle L R 1985 Nucl. Instrum. Methods Phys. Res. B 9 344
[15] Wu M F, Vantomme A, Hogg S, Langouche G, Van der Stricht W, Jacobs K and Moerman I 2001 Nucl. Instrum. Methods Phys. Res. B 174 181
[16] Wu M F, Vantomme A, Hogg S, Pattyn H, Langouche G, Van der Stricht W, Jacobs K and Moerman I 1999 Appl. Phys. Lett. 74 365
[17] Wu M F, Chen Chang chun, Zhu De zhang, Zhou Sheng qiang, Vantomme A, Langouche G, Zhang B S and Yang Hui 2002 Appl. Phys. Lett. 80 4130
[18] Pereira S, Correia M R, Pereira E, O'Donnell K P, Alves E, Sequeira A D and Franco N 2001 Appl. Phys. Lett. 79 1432