Synthesis and Photoluminescence Properties of GaAs Nanowires Grown on Fused Quartz Substrates
ZHAO Yu-Feng, LI Xin-Hua** , SHI Tong-Fei, WANG Wen-Bo, ZHOU Bu-Kang, DUAN Hua-Hua, ZENG Xue-Song, LI Ning, WANG Yu-Qi
Key Laboratory of Material Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031
Abstract :GaAs nanowires are synthesized on fused quartz substrates by using molecular beam epitaxy via a vapor-liquid-solid mechanism with gold as the catalyst. High resolution-transmission electron microscopy is used to probe crystal quality and growth direction. Micro-photoluminescence measurements are carried out to examine the optical properties of GaAs NWs. The low-temperature photoluminescence (PL) emission of nanowires (NWs) has a peak at 1.513 eV, 2 meV lower than the zinc blende GaAs free exciton energy. The temperature-dependent band gap of NWs is seen to be somewhat different from that observed in bulk GaAs, and the PL rapidly quenches above 150 K, with an activation energy of 6.3 meV reflecting the presence of the longitudinal twins' structure.
出版日期: 2014-04-24
引用本文:
. [J]. 中国物理快报, 2014, 31(05): 56101-056101.
ZHAO Yu-Feng, LI Xin-Hua, SHI Tong-Fei, WANG Wen-Bo, ZHOU Bu-Kang, DUAN Hua-Hua, ZENG Xue-Song, LI Ning, WANG Yu-Qi. Synthesis and Photoluminescence Properties of GaAs Nanowires Grown on Fused Quartz Substrates. Chin. Phys. Lett., 2014, 31(05): 56101-056101.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/31/5/056101
或
https://cpl.iphy.ac.cn/CN/Y2014/V31/I05/56101
[1] Nilsson H A, Thelander C, Froberg L E, Wagner J B and Samuelson L 2006 Appl. Phys. Lett. 89 163101 [2] Liu H, Yao J Q, Zheng F H, Xu D G and Wang P 2007 Chin. Phys. Lett. 24 1290 [3] Tchernycheva M, Harmand J C, Patriarche G, Travers L and Cirlin G E 2006 Nanotechnology 17 4025 [4] Plante M C and Lapierre R R 2008 Nanotechnology 19 495603 [5] Kang J H, Gao Q, Joyce H J, Tan H H, Jagadish C, Kim Y, Choi D Y, Guo Y, Xu H, Zou J, Fickenscher M A, Smith L M, Jackson H E and Yarrison-Rice J M 2010 Nanotechnology 21 035604 [6] Dhaka V, Haggren T, Jussila H, Jiang H, Kauppinen E, Huhtio T, Sopanen M and Lipsanen H 2012 Nano Lett. 12 1912 [7] Wagner R and Ellis W 1964 Appl. Phys. Lett. 4 89 [8] Titova L, Hoang T B, Jackson H, Smith L, Yarrison-Rice J, Kim Y, Joyce H, Tan H and Jagadish C 2006 Appl. Phys. Lett. 89 173126 [9] Geaney H, Dickinson C, Weng W, Kiely C J, Barrett C A, Gunning R D and Ryan K M 2011 Cryst. Growth Des. 11 3266 [10] Davidson F M, Lee D C, Fanfair D D and Korgel B A 2007 J. Phys. Chem. C 111 2929 [11] Hoang T B, Moses A, Zhou H, Dheeraj D, Fimland B and Weman H 2009 Appl. Phys. Lett. 94 133105 [12] Lautenschlager P, Garriga M, Logothetidis S and Cardona M 1987 Phys. Rev. B 35 9174 [13] Cardona M, Meyer T and Thewalt M 2004 Phys. Rev. Lett. 92 196403 [14] Joyce H J, Gao Q, Tan H H, Jagadish C, Kim Y, Fickenscher M A, Perera S, Hoang T B, Smith L M and Jackson H E 2008 Adv. Funct. Mater. 18 3794 [15] Chiari A, Colocci M, Fermi F, Li Y, Querzoli R, Vinattieri A and Zhuang W 1988 Phys. Status Solidi B 147 421
[1]
. [J]. 中国物理快报, 2021, 38(9): 97201-.
[2]
. [J]. 中国物理快报, 2018, 35(3): 34202-.
[3]
. [J]. 中国物理快报, 2018, 35(1): 16101-.
[4]
. [J]. 中国物理快报, 2017, 34(8): 87801-.
[5]
. [J]. 中国物理快报, 2015, 32(11): 116102-116102.
[6]
. [J]. 中国物理快报, 2015, 32(10): 104204-104204.
[7]
. [J]. 中国物理快报, 2014, 31(11): 114205-114205.
[8]
. [J]. 中国物理快报, 2014, 31(10): 108503-108503.
[9]
. [J]. 中国物理快报, 2014, 31(05): 58101-058101.
[10]
. [J]. 中国物理快报, 2013, 30(8): 87203-087203.
[11]
. [J]. 中国物理快报, 2013, 30(6): 60701-060701.
[12]
. [J]. Chin. Phys. Lett., 2013, 30(2): 26101-026101.
[13]
. [J]. 中国物理快报, 2012, 29(9): 96101-096101.
[14]
. [J]. 中国物理快报, 2012, 29(8): 86802-086802.
[15]
ZHANG Guo-An1 , ZHANG Dong-Wei2 , HE Jin1,2** , SU Yan-Mei2 , WANG Cheng2 , CHEN Qin2 , LIANG Hai-Lang2 , YE Yun2 . A Single-Transistor Active Pixel CMOS Image Sensor Architecture [J]. 中国物理快报, 2012, 29(3): 30702-030702.