Simultaneous Optimization of Power Factor and Thermal Conductivity towards High-Performance InSb-Based Thermoelectric Materials
Wang Li , Tian Xu , Zheng Ma , Abubakar-Yakubu Haruna, Qing-Hui Jiang , Yu-Bo Luo* , and Jun-You Yang*
State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract :Thermoelectric performance of InSb is restricted by its low Seebeck coefficient and high thermal conductivity. Here, CuCl is employed to optimize simultaneously the electrical and thermal transport properties of InSb. The substitution of Cl for Sb results in enhanced electron effective mass, leading to high Seebeck coefficient of $-159.9$ µV/K and high power factor of 31.5 µW$\cdot$cm$^{-1}$$\cdot$K$^{-2}$ at 733 K for InSb + 5 wt% CuCl sample. In addition, CuCl doping creates hierarchical architectures composed of Cu$_{9}$In$_{4}$, Sb, Cu$_{2}$Sb in InSb, leading to a strengthened phonon scattering in a wide wavelength (i.e., nano to meso scale), thus a low lattice thermal conductivity of 2.97 W$\cdot$m$^{-1}$$\cdot$K$^{-1}$ at 733 K in InSb + 5 wt% CuCl. As a result, a maximum $ZT$ of 0.77 at 733 K has been achieved for the InSb + 5 wt% CuCl sample, increasing by $\sim $250% compared to pristine InSb.
收稿日期: 2021-08-01
出版日期: 2021-09-02
:
72.20.Pa
(Thermoelectric and thermomagnetic effects)
61.72.uj
(III-V and II-VI semiconductors)
66.70.Df
(Metals, alloys, and semiconductors)
引用本文:
. [J]. 中国物理快报, 2021, 38(9): 97201-.
Wang Li , Tian Xu , Zheng Ma , Abubakar-Yakubu Haruna, Qing-Hui Jiang , Yu-Bo Luo, and Jun-You Yang. Simultaneous Optimization of Power Factor and Thermal Conductivity towards High-Performance InSb-Based Thermoelectric Materials. Chin. Phys. Lett., 2021, 38(9): 97201-.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/38/9/097201
或
https://cpl.iphy.ac.cn/CN/Y2021/V38/I9/97201
[1] Snyder G J and Toberer E S 2008 Nat. Mater. 7 105
[2] Biswas K, He J, Blum I D, Wu C I, Hogan T P, Seidman D N, Dravid V P, and Kanatzidis M G 2012 Nature 489 414
[3] Zhao L D, Lo S H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid V P, and Kanatzidis M G 2014 Nature 508 373
[4] Zhou K, Zhang T, Liu B, and Yao Y J 2020 Chin. Phys. Lett. 37 017102
[5] Wang S F, Zhang Z G, Wang B T, Zhang J R, and Wang F W 2021 Chin. Phys. Lett. 38 046301
[6] Yan S, Wang Y, Gao Z, Long Y, and Ren J 2021 Chin. Phys. Lett. 38 027301
[7] Zhu G P, Zhao C W, Wang X W, and Wang J 2021 Chin. Phys. Lett. 38 024401
[8] Zhou L Y, Zheng Q, Bao L H, and Liang W J 2020 Chin. Phys. Lett. 37 017301
[9] Gao L, Liu Q, Yang J, Wu Y, Liu Z, Qin S, Ye X, Jin S, Li G, Zhao H, Long Y 2020 Chin. Phys. Lett. 37 066202
[10] Qin B C, Wang D Y, Liu X X, Qin Y X, Dong J F, Luo J F, Li J W, Liu W, Tan G J, Tang X, Li J, He J, and Zhao L 2021 Science 373 556
[11] Feng B, Li G Q, Hu X M, Liu P H, Li R S, Zhang Y L, Li Y W, He Z, and Fan X A 2020 Chin. Phys. Lett. 37 037201
[12] He W, Qin B, and Zhao L D 2020 Chin. Phys. Lett. 37 087104
[13] Ma Z, Xu T, Li W, Cheng Y, Li J, Zhang D, Jiang Q, Luo Y, and Yang J 2021 Adv. Funct. Mater. 31 2103197
[14] Luo Y, Hao S, Cai S, Slade T J, Luo Z Z, Dravid V P, Wolverton C, Yan Q, and Kanatzidis M G 2020 J. Am. Chem. Soc. 142 15187
[15] Cai S, Hao S, Luo Y, Su X, Luo Z Z, Hu X, Wolverton C, Dravid V P, and Kanatzidis M G 2020 Chem. Mater. 32 3561
[16] Luo Y, Cai S, Hao S, Pielnhofer F, Hadar I, Luo Z Z, Xu J, Wolverton C, Dravid V P, Pfitzner A, Yan Q, and Kanatzidis M G 2020 Joule 4 159
[17] Bowers R, Ure R W, Bauerle J E, and Cornish A J 1959 J. Appl. Phys. 30 930
[18] Yamaguchi S, Matsumoto T, Yamazaki J, Kaiwa N, and Yamamoto A 2005 Appl. Phys. Lett. 87 201902
[19] Su X L, Tang X F, and Han L 2010 Acta Phys. Sin. 59 2860 (in Chinese)
[20] Zhang Q, Xiong Z, Jiang J, Li W, Xu G, Bai S, Cui P, and Chen L 2011 J. Mater. Chem. 21 12398
[21] Mao J, Niedziela J L, Wang Y, Xia Y, Ge B, Liu Z, Zhou J, Ren Z, Liu W, Chan M K Y, Chen G, Delaire O, Zhang Q, and Ren Z 2018 Nano Energy 48 189
[22] Cheng Y, Yang J, Jiang Q, He D, He J, Luo Y, Zhang D, Zhou Z, Ren Y, and Xin J 2017 J. Mater. Chem. A 5 5163
[23] Xin J, Jiang Q, Wen Y, Li S, Zhang J, Basit A, Shu L, Li X, and Yang J 2018 J. Mater. Chem. A 6 17049
[24] Luo Y, Yang J, Jiang Q, Li W, Zhang D, Zhou Z, Cheng Y, Ren Y, and He X 2016 Adv. Energy Mater. 6 1600007
[25] Zhao L D, Lo S H, He J, Li H, Biswas K, Androulakis J, Wu C I, Hogan T P, Chung D Y, Dravid V P, and Kanatzidis M G 2011 J. Am. Chem. Soc. 133 20476
[26] Tan G, Stoumpos C C, Wang S, Bailey T P, Zhao L D, Uher C, and Kanatzidis M G 2017 Adv. Energy Mater. 7 1700099
[27] Suwardi A, Bash D, Ng H K, Gomez J R, Repaka D V M, Kumar P, and Hippalgaonkar K 2019 J. Mater. Chem. A 7 23762
[28] Bouarissa N and Aourag H 1999 Infrared Phys. & Technol. 40 343
[29] Hee K J, Jae K M, Oh S, Rhyee J S, Park S D, and Ahn D 2015 Dalton Trans. 44 3185
[1]
. [J]. 中国物理快报, 2021, 38(12): 127201-.
[2]
. [J]. 中国物理快报, 2021, 38(11): 117201-.
[3]
. [J]. 中国物理快报, 2020, 37(8): 87104-087104.
[4]
. [J]. 中国物理快报, 2020, 37(3): 37201-.
[5]
. [J]. 中国物理快报, 2020, 37(1): 17102-.
[6]
. [J]. 中国物理快报, 2017, 34(12): 127301-.
[7]
. [J]. 中国物理快报, 2017, 34(3): 37101-037101.
[8]
. [J]. 中国物理快报, 2015, 32(11): 117303-117303.
[9]
. [J]. 中国物理快报, 2015, 32(07): 77204-077204.
[10]
. [J]. 中国物理快报, 2015, 32(03): 37201-037201.
[11]
. [J]. 中国物理快报, 2015, 32(01): 14209-014209.
[12]
. [J]. 中国物理快报, 2014, 31(12): 127201-127201.
[13]
. [J]. 中国物理快报, 2013, 30(4): 46801-046801.
[14]
KONG Fang-Fang;LIU Cong-Cong;XU Jing-Kun**;JIANG Feng-Xing;LU Bao-Yang;YUE Rui-Rui;LIU Guo-Dong;WANG Jian-Min
. Simultaneous Enhancement of Electrical Conductivity and Seebeck Coefficient of Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) Films Treated with Urea [J]. 中国物理快报, 2011, 28(3): 37201-037201.
[15]
LU Bao-Yang;LIU Cong-Cong;LU Shan;XU Jing-Kun;JIANG Feng-Xing;LI Yu-Zhen;ZHANG Zhuo. Thermoelectric Performances of Free-Standing Polythiophene and Poly(3-Methylthiophene) Nanofilms
[J]. 中国物理快报, 2010, 27(5): 57201-057201.