摘要A prototype ZnO:Al/amorphous-FeSi2 heterojunction was successfully prepared on a glass substrate by magnetron sputtering at room temperature. The structural and electrical properties of as−deposited FeSi2 thin films were investigated using x−ray diffraction, Raman scattering, resistivity, and carrier lifetime measurement. The FeSi2 thin film showed an amorphous phase with resistivity of 9.685 Ω⋅cm and carrier lifetime of 9.5 µs. The prototype ZnO:Al/amorphous−FeSi2 heterojunction exhibited a rectifying property of the diode from the dark current−voltage characteristic. This propert was evaluated using the shunt resistance and diode ideal factor. The experimental results suggest that the amorphous-FeSi2 thin film has promising applications in heterojunction devices with low thermal budget and low product cost.
Abstract:A prototype ZnO:Al/amorphous-FeSi2 heterojunction was successfully prepared on a glass substrate by magnetron sputtering at room temperature. The structural and electrical properties of as−deposited FeSi2 thin films were investigated using x−ray diffraction, Raman scattering, resistivity, and carrier lifetime measurement. The FeSi2 thin film showed an amorphous phase with resistivity of 9.685 Ω⋅cm and carrier lifetime of 9.5 µs. The prototype ZnO:Al/amorphous−FeSi2 heterojunction exhibited a rectifying property of the diode from the dark current−voltage characteristic. This propert was evaluated using the shunt resistance and diode ideal factor. The experimental results suggest that the amorphous-FeSi2 thin film has promising applications in heterojunction devices with low thermal budget and low product cost.
XU Jia-Xiong;YAO Ruo-He*;LIU Yu-Rong
. Fabrication of a ZnO:Al/Amorphous-FeSi2 Heterojunction at Room Temperature[J]. 中国物理快报, 2011, 28(10): 107304-107304.
XU Jia-Xiong, YAO Ruo-He*, LIU Yu-Rong
. Fabrication of a ZnO:Al/Amorphous-FeSi2 Heterojunction at Room Temperature. Chin. Phys. Lett., 2011, 28(10): 107304-107304.
[1] Maeda Y 2008 Appl. Surf. Sci. 254 6242
[2] Yamaguchi K and Mizushima K 2001 Phys. Rev. Lett. 86 6006
[3] Tan K H, Pey K L and Chi D Z 2009 J. Appl. Phys. 106 023712
[4] Ugajin Y, Takauji M and Suemasu T 2006 Thin Solid Films 508 376
[5] Shaban M et al 2009 Appl. Phys. Lett. 94 222113
[6] Liu Z X et al 2006 Sol. Energy Mater. Sol. C 90 276
[7] Shaban M et al 2008 Jpn. J. Appl. Phys. 47 3444
[8] Liu Z X et al 2006 Thin Solid Films 515 1532
[9] Milosavljevic M et al 2002 Nucl. Instrum. Methods B 188 166
[10] Milosavljevic M et al 2001 Appl. Phys. Lett. 79 1438
[11] Milosavljevic M et al 2004 Thin Solid Films 461 72
[12] Wong L et al 2008 Semicond. Sci. Technol. 23 035007
[13] Milosavljevic M et al 2005 J. Appl. Phys. 98 123506
[14] Liu Z X et al 2005 Jpn. J. Appl. Phys. 44 L261
[15] Liu Z X et al 2004 J. Appl. Phys. 95 4019
[16] Gong D R et al 2008 Appl. Surf. Sci. 254 4875
[17] Schuller B, Carius R and Mantl S 2003 J. Appl. Phys. 94 207
[18] Xu J X, Yao R H and Geng K W 2011 J. Vac. Sci. Technol. A 29 051202