摘要An Al-doped ZnO/p-Si heterojunction is fabricated by a laser molecular beam epitaxy technique. The abnormally high ideality factors (n≫2) of the prepared heterojunction are observed in the interim bias voltage range. A theoretical model is proposed to understand the much higher ideality factor of the special heterojunction diode. The ZnO:Al film shows metal−like conductivity with the electrical resistivity about 6.56×10-4⋅Ω⋅cm at room temperature. The temperature dependence of the photovoltage indicates that the photovoltaic effect of the Al-doped ZnO based heterojunction can be changed by the intrinsic metal-semiconductor transition at 120 K.
Abstract:An Al-doped ZnO/p-Si heterojunction is fabricated by a laser molecular beam epitaxy technique. The abnormally high ideality factors (n≫2) of the prepared heterojunction are observed in the interim bias voltage range. A theoretical model is proposed to understand the much higher ideality factor of the special heterojunction diode. The ZnO:Al film shows metal−like conductivity with the electrical resistivity about 6.56×10-4⋅Ω⋅cm at room temperature. The temperature dependence of the photovoltage indicates that the photovoltaic effect of the Al-doped ZnO based heterojunction can be changed by the intrinsic metal-semiconductor transition at 120 K.
[1] Zhao S Q, Liu W W, Yang L M, Zhao K and Liu H 2009 J. Phys. D: Appl. Phys. 42 185101
[2] Cornelius S, Vinnichenko M, Shevchenko N, Rogozin A and Kolitsch A 2009 Appl. Phys. Lett. 94 042103
[3] Bhosle V, Tiwari A and Narayan J 2006 Appl. Phys. Lett. 88 032106
[4] Jung M N, Koo J E, Oh S J, Lee B W and Lee W J 2009 Appl. Phys. Lett. 94 041906
[5] Sernelius B E, Berggren K F, Jin Z C, Hamberg I and Granqvist C G 1988 Phys. Rev. B 37 10244
[6] Fu Z X, Lin B X and Liao G H 1999 Chin. Phys. Lett. 16 753
[7] Park W I and Yi G C 2004 Adv. Mater. 16 87
[8] Sun Z H, Ning T Y, Zhou Y L, Zhao S Q and Cao L Z 2008 Chin. Phys. Lett. 25 1861
[9] Ohta H, Orita M, Hirano M and Hosono H, 2001 J. Appl. Phys. 89 5720
[10] Yang C, Li X M, Yu W D, Gao X D, Cao X and Li Y Z 2009 J. Phys. D: Appl. Phys. 42 152002
[11] Lei H, Liu C H, Lin B X and Fu Z X 2005 Chin. Phys. Lett. 22 185
[12] Jin K X, Zhao S G, Tan X Y and Chen C L 2008 Mater. Lett. 62 4452
[13] Sah C, Noycc R N and Shockley W 1957 Proc. IRE 45 1228
[14] Rhoderick E H and Kim O K 1988 Metal Semiconductor Contacts 2nd edn (Oxford: Oxford University) p 129
[15] He J H and Ho C H 2007 Appl. Phys. Lett. 91 233105
[16] Shah J M, Li L Y, Gessmann T and Schubert E F 2003 J. Appl. Phys. 94 2627
[17] Raddy N K, Ahsanulhaq Q, Kim J H and Hahn Y B 2008 Appl. Phys. Lett. 92 043127
[18] Mridha S and Basak D 2007 J. Appl. Phys. 101 083102
[19] Sun J R, Shen B G, Sheng Z G and Sun Y P 2004 Appl. Phys. Lett. 85 3375
[20] Mott N F 1974 Metal-Insulator Transition (London: Taylor and Francis)
[21] Bamiduro O, Mustafa H, Mundle R Konda R B and Pradhan A K 2007 Appl. Phys. Lett. 90 252108
[22] Lu Z L, Zou W Q, Xu M X, Zhang F M and Du Y W 2009 Chin. Phys. Lett. 26 116102
[23] Kord K, Williams T M, Hunter D, Zhang K, Dadson J and Pradhan 2006 Appl. Phys. Lett. 88 262105
[24] Pradhan A K, Douglas L, Mustafa H, Mundle R, Hunter D and Bonner C E 2007 Appl. Phys. Lett. 90 072108
[25] Sze S M 1983 Physics of Semiconductor Devices (New York: Wiley)