An Analytical Avalanche Multiplication Model for Partially Depleted Silicon-on-Insulator SiGe Heterojunction Bipolar Transistors
XU Xiao-Bo**, ZHANG He-Ming
Key Laboratory of Ministry of Education for Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071
An Analytical Avalanche Multiplication Model for Partially Depleted Silicon-on-Insulator SiGe Heterojunction Bipolar Transistors
XU Xiao-Bo**, ZHANG He-Ming
Key Laboratory of Ministry of Education for Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071
摘要An analytical expression for avalanche multiplication of a novel vertical SiGe partially depleted heterojunction bipolar transistor (HBT) on a thin silicon-on-insulator (SOI) layer is obtained, considering vertical and horizontal impact ionization effects. The avalanche multiplication is found to be dependent on the collector width and doping concentration, and shows kinks with the increase of reverse base-collector bias, which is quite different from that of a conventional bulk HBT. The model is consistent with the experimental and simulation data and is found to be significant for the design and simulation of 0.13 µm millimeter wave SiGe SOI BiCMOS technology.
Abstract:An analytical expression for avalanche multiplication of a novel vertical SiGe partially depleted heterojunction bipolar transistor (HBT) on a thin silicon-on-insulator (SOI) layer is obtained, considering vertical and horizontal impact ionization effects. The avalanche multiplication is found to be dependent on the collector width and doping concentration, and shows kinks with the increase of reverse base-collector bias, which is quite different from that of a conventional bulk HBT. The model is consistent with the experimental and simulation data and is found to be significant for the design and simulation of 0.13 µm millimeter wave SiGe SOI BiCMOS technology.
[1] Cai J, Ajmera A, Ouyang C, Oldiges P, Steigerwalt M, Stein K, Jenkins K, Shahidi G and Ning T 2002 Symposium on VLSI Technology Digest of Technical Papers (Honolulu, HI 11–13 June 2002) p 172
[2] Cai J and Ning T H 2004 The 7th International Conference on Solid-State and Integrated Circuits Technology Proceedings (Beijing 18–21 October 2004) p 2102
[3] Avenier G, Chevalier P, Vandelle B, Lenoble D, Saguin F, Fregonese S, Zimmer T and Chantre A 2005 Proceedings of ESSDERC 31st European Solid-State Device Research Conference (Grenoble 12–16 September 2005) p 133
[4] Avenier G, Diop M, Chevalier P, Troillard G, Loubet N, Bouvier J, Depoyan Linda, Derrier N, Buczko M, Leyris C, Boret S, Montusclat S, Margain A, Pruvost S, Nicolson S T, Yau K H K, Revil N, Gloria D, Dutartre D, Voinigescu S P and Chantre A 2009 IEEE J. Solid-State Circuits 44 2312
[5] Avenier G, Fregonese S, Chevalier P, Bustos J, Saguin F, Schwartzmann T, Maneux C, Zimmer T and Chantre A 2008 IEEE Trans. Electron. Devices 55 585
[6] Xu X B, Zhang H M, Hu H Y, Ma J L and Xu L J 2011 Chin. Phys. B 20 018502
[7] Xu X B, Zhang H M, Hu H Y and Ma J L 2011 Chin. Phys. B 20 058502
[8] Xu X B, Zhang H M, Hu H Y and Qu J T 2011 Chin. Phys. B 20 058503
[9] Fregonese S, Avenier G, Maneux, C, Chantre A and Zimmer T 2005 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (Santa Barbara, CA 9–11 October 2005) p 184
[10] Rubel O, Baranovskii S, Zvyagin I P, Thomas P and Kasap S O 2004 Phys. Status Solidi C 1 1186
[11] Schroter M http://www. iee.et.tu-dresden.de/iee/eb/hic_new/hic_doc.html
[12] Paasschens J C J and Kloosterman W J 2000 Proceedings of the 2000 IEEE Bipolar/BiCMOS Circuits and Technology Meeting Minneapolis (MN, USA 34–26 September 2000) p 172