摘要By using compositionally graded SiGe films as virtual substrates, tensile strained Si films with the strain of 1.5% and the threading dislocation density less than 1.0×105cm-2 are successfully grown in micron size windows by molecular beam epitaxy (MBE). The thickness of the virtual substrates was only 330nm. On the surface of the s-Si films no cross-hatched lines resulting from misfit dislocations could be observed. We attribute these results to the edge-induced strain relaxation of the epitaxial films in windows, and the patterned virtual substrates with compositionally graded SiGe films.
Abstract:By using compositionally graded SiGe films as virtual substrates, tensile strained Si films with the strain of 1.5% and the threading dislocation density less than 1.0×105cm-2 are successfully grown in micron size windows by molecular beam epitaxy (MBE). The thickness of the virtual substrates was only 330nm. On the surface of the s-Si films no cross-hatched lines resulting from misfit dislocations could be observed. We attribute these results to the edge-induced strain relaxation of the epitaxial films in windows, and the patterned virtual substrates with compositionally graded SiGe films.
YANG Hong-Bin;ZHANG Xiang-Jiu. Highly Strained Si Films with Ultra-low Dislocation Density Grown on Virtual Substrates of Thin Thickness[J]. 中国物理快报, 2009, 26(4): 48103-048103.
YANG Hong-Bin, ZHANG Xiang-Jiu. Highly Strained Si Films with Ultra-low Dislocation Density Grown on Virtual Substrates of Thin Thickness. Chin. Phys. Lett., 2009, 26(4): 48103-048103.
[1] Lee M L, Fitzgerald E A, Bulsara M T, Currie M T andLochtefeld A 2005 J. Appl. Phys. 97 011101 [2] Khare P, Schroder D and R. Sampson 2007 Solid StateElectron. 51 828 [3] Krishnamohan T, Krivokapic Z, Uchida K, Nishi Y andSaraswat K C 2006 IEEE Electron. Dev. 53 990 [4] Takagi S I, Hoyt J L, Welser J J and Gibbons J F 1996 J. Appl. Phys. 80 1567 [5] Oberhuber R, Zandler G and Vogl P 1998 Phys. Rev. B 58 9941 [6] Fitzgerald E A, Xie Y H, Green M L, Brasen D, Kortan A R,Michel J, Mii Y J, and Weir B E 1991 Appl. Phys. Lett. 59 811 [7] Capewell A D, Grasby T J, Whall T E and Parker E H C 2002 Appl. Phys. Lett. 81 4775 [8] Ishizaka A and Shiraki Y 1986 J. Electrochem. Soc. 133 666 [9] Werner J, Lyutovich K and Parry C P 2004 Eur. Phys.J. Appl. Phys. 27 367 [10] Rath S, Hsieh M L, Etchegoin P and Stradling R A 2003 Semicond. Sci. Technol. 18 566 [11] Tsang J C, Mooney P M, Dacol F and Chu J O 1994 J.Appl. Phys. 75 8098 [12] Langdo T A, Currie M T, Lochtefeld A, Hammond R, Carlin JA, Erdtmann M, Braithwaite G, Yang V K, Vineis C J, Badawi H andBulsara M T 2003 Appl. Phys. Lett. 82 4256 [13] Hsu J W P, Fitzgerald E A, Xie Y H, Silverman P J andCardillo M J 1992 Appl. Phys. Lett. 61 1293 [14] Murakami E, Nishida A, Etoh H, Nakagawa K and Miyao M1990 Mater. Res. Soc. Symp. Proc. 198 57 [15] Xiong H, Zhang X-j, Jiang Z M, Hu J H, Shi B, Zhou X F,Jiang W R, Hu D Z and Fan Y L 2001 J. Crys. Growth, 23374 [16] Fischer A and Richter H 1994 J. Appl. Phys. 75 657 [17] Lu X D, Zhang X-j, Yang H B, Fan Y L, Wang W N and Sun YQ 2006 Chin. Phys. Lett. 23 220 [18] Hu S M 1991 J. Appl. Phys. 70 R53 [19] Stoica T and Vescan L 1993 J. Crys. Growth, 131 32 [20] Fitzgerald E A, Watson G P, Proano R E, Ast D G, KirchnerP D, Pettit G D and Woodall J M 1989 J. Appl. Phys. 652220