Alternating-Current Transport Properties of the Interface between Nd0.7Sr0.3MnO3 Ceramic and a Ag Electrode
CHEN Shun-Sheng1,2, YANG Chang-Ping1,5**, LUO Xiao-Jing1, Bärner K.3, Medvedeva I. V.4
1Faculty of Physics and Electronic Technology, Hubei University, Wuhan 430062 2Faculty of Mathematics and Physics, Huangshi Institute of Technology, Huangshi 435003 3Department of Physics, University of Göttingen, Tammanstrasse 1-37077 Göttingen, Germany 4Institute of Metal Physics, Ural Division of the Russian Academy of Sciences, Ekaterinburg 620219, Russia 5State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004
Alternating-Current Transport Properties of the Interface between Nd0.7Sr0.3MnO3 Ceramic and a Ag Electrode
CHEN Shun-Sheng1,2, YANG Chang-Ping1,5**, LUO Xiao-Jing1, Bärner K.3, Medvedeva I. V.4
1Faculty of Physics and Electronic Technology, Hubei University, Wuhan 430062 2Faculty of Mathematics and Physics, Huangshi Institute of Technology, Huangshi 435003 3Department of Physics, University of Göttingen, Tammanstrasse 1-37077 Göttingen, Germany 4Institute of Metal Physics, Ural Division of the Russian Academy of Sciences, Ekaterinburg 620219, Russia 5State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004
摘要Electrical transport properties of the interface between a Nd0.7Sr0.3MnO3 ceramic and a Ag electrode are investigated using the ac impedance over a wide temperature and frequency ranges. The ac impedance measurements give the compressed semicircle arcs at different temperatures, which are used for the analysis of different contributions to electrical transport based on an electrical equivalent circuit. A significant interface-dependent electroresistance effect of 530% is clearly developed around the metal-insulator transition temperature 130 K, which is confirmed as the interface-layer dependent Curie temperature by the plot of interfacial conductance with frequency at different temperatures.
Abstract:Electrical transport properties of the interface between a Nd0.7Sr0.3MnO3 ceramic and a Ag electrode are investigated using the ac impedance over a wide temperature and frequency ranges. The ac impedance measurements give the compressed semicircle arcs at different temperatures, which are used for the analysis of different contributions to electrical transport based on an electrical equivalent circuit. A significant interface-dependent electroresistance effect of 530% is clearly developed around the metal-insulator transition temperature 130 K, which is confirmed as the interface-layer dependent Curie temperature by the plot of interfacial conductance with frequency at different temperatures.
CHEN Shun-Sheng1,2, YANG Chang-Ping1,5**, LUO Xiao-Jing1, Bärner K.3, Medvedeva I. V.4. Alternating-Current Transport Properties of the Interface between Nd0.7Sr0.3MnO3 Ceramic and a Ag Electrode[J]. 中国物理快报, 2012, 29(2): 27302-027302.
CHEN Shun-Sheng, YANG Chang-Ping, LUO Xiao-Jing, Bä, rner K., Medvedeva I. V.. Alternating-Current Transport Properties of the Interface between Nd0.7Sr0.3MnO3 Ceramic and a Ag Electrode. Chin. Phys. Lett., 2012, 29(2): 27302-027302.
[1] Van de Krol R and Tuller H L 2002 Solid State Ionics 150 167
[2] Klein A, Säuberlich F, Späth B, Schulmeyer T and Kraft D 2007 J. Mater. Sci. 42 1890
[3] Tiefenbacher S, Pettenkofer C and Jaegermann W 2002 J. Appl. Phys. 91 1984
[4] Rüggeber g F and Klein A 2006 Appl. Phys. A 82 281
[5] Körber C, Harvey S P, Mason T O and Klein A 2008 Surf. Sci. 602 3246
[6] Gassenbauer Y, Wachau A and Klein A 2009 Phys. Chem. Chem. Phys. 11 3049
[7] Maier J 2009 Phys. Chem. Chem. Phys. 11 3011
[8] Nakasaka T, Urago K, Sugiura M and Kobayashi T 2001 Jpn. J. Appl. Phys. II 40 L518
[9] Oka T and Nagaosa N 2005 Phys. Rev. Lett. 95 266403
[10] Shang D S, Wang Q, Chen L D, Dong R, Li X M and Zhang W Q 2006 Phys. Rev. B 73 245427
[11] Quintero M, Levy P, Leyva A G and Rozenberg M J 2007 Phys. Rev. Lett. 98 116601
[12] Dong R, Wang Q, Chen L D, Shang D S, Chen T L, Li X M and Zhang W Q 2005 Appl. Phys. Lett. 86 172107
[13] Baikalo A, Wang Y Q, Shen B, Lorenz B, Tsui S, Sun Y Y, Xue Y Y and Chu C W 2003 Appl. Phys. Lett. 83 957
[14] Sawa A, Fujii T, Kawasaki M and Tokura Y 2004 Appl. Phys. Lett. 85 4073
[15] Ohkubo I, Tsubouchi K, Harada T, Kumigashira H, Itaka K, Matsumoto Y, Ohnishi T, Lippmaa M, Koinuma H and Oshima M 2008 Mater. Sci. Eng. B 148 13
[16] Yang C P, Chen S S, Dai Q, Guo D H and Wang H 2007 Acta. Phys. Sin. 56 4908
[17] Ying Y, Fan J Y, Pi L, Hong B, Tan S and Zhang Y H 2007 Solid State Commun. 144 300
[18] Yang C P, Morchshakov V, Huang Y L, Troyanchuk I O and Bärner K 2003 Physica B 337 287
[19] Nadeem M, Akhtar M J, Khan A Y, Shaheen R and Haque M N 2002 Chem. Phys. Lett. 366 433
[20] Hu J and Qin H 2001 J. Magn. Magn. Mater. 231 L1
[21] Nadeem M, Akhtar M J and Khan A Y 2005 Solid State Commun. 134 431
[22] Hu J and Qin H 2001 Mater. Trans. 42 1790
[23] Rahmouni H, Nouiri M, Jemai R, Kallel N, Rzigua F, Selmi A, Khirouni K and Alaya S 2007 J. Magn. Magn. Mater. 316 23
[24] Chen S S, Yang C P, Deng H and Sun Z G 2008 Acta Phys. Sin. 57 3798
[25] Pradhan Dillip K, Samantaray B K, Choudhary R N P and Thakur Awalendra K 2005 Mater. Sci. Eng. B 116 7
[26] Sen S and Chaudhary R N P 2004 Mater. Chem. Phys. 87 256
[27] Hu J and Qin H 2001 J. Magn. Magn. Mater. 234 419
[28] Tsui S, Baikalov A, Cmaidalka J, Sun Y Y, Wang Y Q, Xue Y Y, Chu C W, Chen L and Jacobson A J 2004 Appl. Phys. Lett. 85 317
[29] Peláiz Barranco A, Gutiérrez Amador M P, Huanosta A and Valenzuela R 1998 Appl. Phys. Lett. 73 2039
[30] Jonscher A K 1977 Nature 276 673