摘要We present a simplified structure made of periodic metallic layers on a glass substrate, which offers a potentially simpler approach to building photonic crystals. Using microwave experiments and Fresnel formulas, we investigate the refractive index properties of these structures. We make both transmission and reflection measurements and find that the refractive index of a periodic layered media decreases depending on the periodicity of the geometric arrangement, dielectric contrast and filling fraction of metallic layers. It is shown that metallic layers lead to a substantial change of interference pattern which can be interpreted as a result of interference in a uniform medium with a refractive index smaller than 1.
Abstract:We present a simplified structure made of periodic metallic layers on a glass substrate, which offers a potentially simpler approach to building photonic crystals. Using microwave experiments and Fresnel formulas, we investigate the refractive index properties of these structures. We make both transmission and reflection measurements and find that the refractive index of a periodic layered media decreases depending on the periodicity of the geometric arrangement, dielectric contrast and filling fraction of metallic layers. It is shown that metallic layers lead to a substantial change of interference pattern which can be interpreted as a result of interference in a uniform medium with a refractive index smaller than 1.
A. Ozturk**, R. Suleymanli, B. Aktas, A. Teber. Effect of Thin Metallic Layers on the Refractive Index of a Multilayer System[J]. 中国物理快报, 2012, 29(2): 27301-027301.
A. Ozturk, R. Suleymanli, B. Aktas, A. Teber. Effect of Thin Metallic Layers on the Refractive Index of a Multilayer System. Chin. Phys. Lett., 2012, 29(2): 27301-027301.
[1] Joannopoulos D et al 1995 Photonic Crystals (Princeton: Princeton University Press)
[2] Ozbay E et al 1996 Appl. Phys. Lett. 69 3797
[3] Joannopoulos J D et al 1997 Nature 386 143
[4] Bruyant A et al 2003 Appl. Phys. Lett. 82 3227
[5] Luo C et al 2004 Proc. SPIE 5166 207
[6] Aydin K et al 2008 Opt. Express 16 12 8835
[7] Sellier A et al 2009 Opt. Express 17 6301
[8] Takinami Y and Kirihara S 2011 Mater. Sci. Engin. 18 7 072016
[9] Owens D et al 2009 Thin Solid Films 517 2736
[10] Lee G J and Lee Y P 2007 J. Korean Phys. Soc. 51 431
[11] Wegener M and Linden S 2010 Phys. Today 63 32
[12] Chen L F et al 2004 Microwave Electron. (New York: J. Wiley & Sons Ltd)
[13] Born M and Wolf E Principles of Optics (Cambridge: Cambridge University Press) sec 10.5
[14] Yeh P 1988 Optical Waves in Layered Media (New York: Wiley)
[15] Li X H et al 2011 IEEE Photon. J. 3 489
[16] Wierer J J et al 2009 Nature Photon. 3 163
[17] Zhao H et al 2011 Opt. Express 19 A991
[18] Zhao H et al 2011 Appl. Phys. Lett. 98 151115