Transparent Conductive Al-Doped ZnO/Cu Bilayer Films Grown on Polymer Substrates at Room Temperature
HUANG Ji-Jie1, WANG Yu-Ping1, LU Jian-Guo1**, GONG Li2, YE Zhi-Zhen1
1State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 2College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha 410015
Transparent Conductive Al-Doped ZnO/Cu Bilayer Films Grown on Polymer Substrates at Room Temperature
HUANG Ji-Jie1, WANG Yu-Ping1, LU Jian-Guo1**, GONG Li2, YE Zhi-Zhen1
1State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 2College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha 410015
摘要Al-doped ZnO (AZO)/Cu bi-layer films are deposited by dc magnetron sputtering on polycarbonate substrates at room temperature. The structural, electrical and optical properties of the films are investigated at various sputtering powers of the Cu layer. The AZO/Cu bi-layer film deposited at a moderate sputtering power of 180 W for the Cu layer displayed the highest figure of merit of 3.47×10−3 Ω-1, with a low sheet resistance of 12.38 Ω/sq, an acceptable visible transmittance of 73%, and a high near-infrared reflectance of about 50%.
Abstract:Al-doped ZnO (AZO)/Cu bi-layer films are deposited by dc magnetron sputtering on polycarbonate substrates at room temperature. The structural, electrical and optical properties of the films are investigated at various sputtering powers of the Cu layer. The AZO/Cu bi-layer film deposited at a moderate sputtering power of 180 W for the Cu layer displayed the highest figure of merit of 3.47×10−3 Ω-1, with a low sheet resistance of 12.38 Ω/sq, an acceptable visible transmittance of 73%, and a high near-infrared reflectance of about 50%.
[1] Fortunato E, Nunes P, Marques A, Costa D, Aguas H, Ferreira I, Costa M E V, Godinaho M H, Almeida P L, Borges J P and Martins R 2002 Surf. Coat. Technol. 151–152 247
[2] Fortunato E, Raniero L, Silva L, Goncalves A, Pimentel A, Barquinha P, Aguas H, Pereira L, Goncalves G, Ferreira I, Elangovan E and Martins R 2008 Sol. Energy Mater. Sol. Cells 92 1605
[3] Lewis B G and Paine D C 2000 MRS Bull. 25 22
[4] Gong L, Lu J G and Ye Z Z 2010 Sol. Energy Mater. Sol. Cells 94 1282
[5] Lambertz A, Rob C, Siekmann H, Stollwerk G and Finger F 2006 Proceedings of the 21st European Photovoltaic Solar Energy Conference (Dresden, Germany 4–8 September 2006) p 1771
[6] Gong L, Lu J G and Ye Z Z, 2010 Sol. Energy Mater. Sol. Cells 94 937
[7] Assuncao V, Fortunato E, Marques Goncalves A, Ferreira I, Aguas H and Martins R 2003 Thin Solid Films 442 102
[8] Bamiduro O, Mustafa H, Mundle R, Konda R B and Pradhan A K 2007 Appl. Phys. Lett. 90 252108-1-3
[9] Cho H J, Park K W, Ahn J K, Seong N J, Yoon S G, Park W H, Yoon S M, Park D J and Lee J Y 2009 J. Electrochem. Soc. 156 215
[10] Lee C J, Lin H K, Sun S Y and Huang J C 2010 Appl. Surf. Sci. 257 239
[11] Hu Y M, Lin C W and Huang J C A 2006 Thin Solid Films 497 130
[12] Gong L, Lu J G and Ye Z Z 2011 Solar Energy Mater. Solar Cells 95 1826
[13] Han H, Theodore N D and Alford T L 2008 Solar Energy Mater. Solar Cells 103 013708
[14] Yang T L, Zhang Z S, Song S M, Li Y H, Lv M S, Wu Z C and Han S H 2009 Vacuum 83 257
[15] Sahu D R, Lin S Y and Huang J L 2007 Sol. Energy Mater. Sol. Cells 91 851
[16] Sahu D R and Huang J L 2009 Sol. Energy Mater. Sol. Cells 93 1923
[17] Sahu D R and Huang J L 2006 Appl. Surf. Sci. 253 827
[18] Park H K, Kang J W, Na S I, Kim D Y and Kim H K 2009 Sol. Energy Mater. Sol. Cells 93 1994
[19] Wang Y P, Lu J G, Bie X, Ye Z Z, Li X, Song D, Zhao X Y and Ye W Y 2011 Appl. Surf. Sci. 257 5966
[20] Tung M, Sohn Y U, Lim J W and Choi G S 2010 Mater. Trans. 51 116
[21] Ma Q B, Ye Z Z, He H P, Zhu L P, Huang J Y, Zhang Y Z and Zhao B H 2008 Scr. Mater. 58 21
[22] Haacke G 1976 J. Appl. Phys. 47 4086