Effect of Residual Charge Carrier on the Performance of a Graphene Field Effect Transistor
Sedighe Salimian** , Mohammad Esmaeil Azim Araghi
Faculty of Physics, Kharazmi University, Tehran, Iran
Abstract :The temperature-dependent effect of residual charge carrier ($n_{0})$, at the Dirac point, on mobility is studied. We fabricate and characterize a graphene field effect transistor (GFET) using 7 nm TiO$_{2}$ as the top-gate dielectric. The temperature-dependent gate voltage-drain current and room temperature gate capacitance are measured to extract the carrier mobility and to estimate the quantum capacitance of the GFET. The device shows the mobility value of 900 cm$^{2}$/V$\cdot$s at room temperature and it decreases to 45 cm$^{2}$/V$\cdot$s for 20 K due to the increase of $n_{0}$. These results indicate that the phonon scattering is not the dominant process for the unevenness dielectric layer while the coulomb scattering by charged impurities degrades the device characteristically at low temperature.
收稿日期: 2015-10-07
出版日期: 2016-01-29
:
72.80.Vp
(Electronic transport in graphene)
73.40.Cg
(Contact resistance, contact potential)
73.40.Sx
(Metal-semiconductor-metal structures)
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 [2] Lin M W, Ling C, Zhang Y, Yoon H J, Cheng M M C, Agapito L A, Kioussis N, Widjaja N and Zhou Z 2011 Nanotechnology 22 265201 [3] He Z Z, Yang K W, Yu C, Li J, Liu Q B et al 2015 Chin. Phys. Lett. 32 117204 [4] Smith A D, Vaziri S, Rodriguez S, ?stling M and Lemme M C 2015 Solid-State Electron. 108 61 [5] Yu W J and Duan X 2013 Sci. Rep. 3 1248 [6] Cavallo F, Delgado R R, Kelly M M, Sánchez Pérez J R, Schroeder D P, Grace Xing H, Eriksson M A and Lagally M G 2014 ACS Nano 8 10237 [7] Perreault F, Fonseca de Faria A and Elimelech M 2015 Chem. Soc. Rev. 44 5861 [8] Nagashio K, Yamashita T, Nishimura T, Kita K and Toriumi A 2011 J. Appl. Phys. 110 024513 [9] Lv H, Wu H, Liu J, Yu J, Niu J, Li J, Xu Q, Wu X and Qian H 2013 Appl. Phys. Lett. 103 193102 [10] Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Elias D C, Jaszczak J A and Geim A K 2008 Phys. Rev. Lett. 100 016602 [11] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183 [12] Geim A K 2009 Science 324 1530 [13] Vaziri S, Belete M, Dentoni Litta E, Smith A D, Lupina G, Lemme M C and ?stling M 2015 Nanoscale 7 13096 [14] Schwierz F 2010 Nat. Nanotechnol. 5 487 [15] Babaee T S and Pourfath M 2013 Appl. Phys. Lett. 103 143506 [16] Venugopal A, Chan J, Li X, Magnuson C W, Kirk W P, Colombo L, Ruoff R S and Vogel E M 2011 J. Appl. Phys. 109 104511 [17] Negishi R, Ohno Y, Maehashi K, Matsumoto K and Kobayashi Y 2012 Jpn. J. Appl. Phys. 51 06FD03 [18] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197 [19] Zhong H, Zhang Z, Xu H, Qiu C and Peng L M 2015 AIP Adv. 5 057136 [20] Aoki H and Dresselhaus M S 2014 Physics of Graphene (London: Springer) chap 3 p 84 [21] Zhang Z, Xu H, Zhong H and Peng L M 2012 Appl. Phys. Lett. 101 213103 [22] Lemme M C, Echtermeyer T J, Baus M and Kurz H 2007 IEEE Electron Device Lett. 28 282 [23] Kim S, Nah J, Jo I, Shahrjerdi D, Colombo L, Yao Z, Tutuc E and Banerjee S K 2009 Appl. Phys. Lett. 94 062107 [24] De Arco L G, Zhang Y, Kumar A and Zhou C 2009 IEEE Trans. Nanotechnol. 8 135 [25] Lee Y, Bae S, Jang H, Jang S, Zhu S E, Sim S, Song Y I, Hong B H and Ahn J H 2010 Nano Lett. 10 490 [26] Li X, Zhu Y, Cai W, Borysiak M, Han B, Chen D, Piner R D, Colombo L and Ruoff R S 2009 Nano Lett. 9 4359 [27] Lin Y C, Jin C, Lee J C, Jen S F, Suenaga K and Chiu P W 2011 ACS Nano 5 2362 [28] Reina A, Son H, Jiao L, Fan B, Dresselhaus M S, Liu Z and Kong J 2008 J. Phys. Chem. C 112 17741 [29] Zhang Y, Mendez E E and Du X 2011 ACS Nano 5 8124 [30] Wang D and Shi J 2011 Phys. Rev. B 83 113403 [31] Deen D A, Champlain J G and Koester S J 2013 Appl. Phys. Lett. 103 073504 [32] Khoshnevis S, Dariani R S, Azim-Araghi M E, Bayindir Z and Robbie K 2006 Thin Solid Films 515 2650 [33] Lu G, Ocola L E and Chen J 2009 Adv. Mater. 21 2487 [34] Chen J H, Jang C, Xiao S, Ishigami M and Fuhrer M S 2008 Nat. Nanotechnol. 3 206
[1]
. [J]. 中国物理快报, 2022, 39(9): 97302-.
[2]
. [J]. 中国物理快报, 2021, 38(9): 97101-.
[3]
. [J]. 中国物理快报, 2020, 37(7): 76801-.
[4]
. [J]. 中国物理快报, 2020, 37(7): 77301-.
[5]
. [J]. 中国物理快报, 2019, 36(6): 67202-.
[6]
. [J]. 中国物理快报, 2019, 36(3): 37301-.
[7]
. [J]. 中国物理快报, 2017, 34(6): 67201-.
[8]
. [J]. 中国物理快报, 2017, 34(5): 57201-.
[9]
. [J]. 中国物理快报, 2016, 33(08): 86801-086801.
[10]
. [J]. 中国物理快报, 2016, 33(04): 47301-047301.
[11]
. [J]. 中国物理快报, 2015, 32(11): 117204-117204.
[12]
. [J]. 中国物理快报, 2015, 32(07): 76802-076802.
[13]
. [J]. 中国物理快报, 2015, 32(07): 77201-077201.
[14]
. [J]. 中国物理快报, 2014, 31(06): 67202-067202.
[15]
. [J]. 中国物理快报, 2013, 30(9): 97201-097201.