Giant-Capacitance-Induced Wide Quantum Hall Plateaus in Graphene on LaAlO$_{3}$/SrTiO$_{3}$ Heterostructures
Ran Tao1,2, Lin Li1,2*, Li-Jun Zhu1,2, Yue-Dong Yan1,2, Lin-Hai Guo1,2, Xiao-Dong Fan1,2, and Chang-Gan Zeng1,2*
1International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China 2CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China, Hefei 230026, China
Abstract:Hybrid structures of two distinct materials provide an excellent opportunity to optimize functionalities. We report the realization of wide quantum Hall plateaus in graphene field-effect devices on the LaAlO$_{3}$/SrTiO$_{3}$ heterostructures. Well-defined quantized Hall resistance plateaus at filling factors $v=\pm2$ can be obtained over wide ranges of the magnetic field and gate voltage, e.g., extending from 2 T to a maximum available magnetic field of 9 T. By using a simple band diagram model, it is revealed that these wide plateaus arise from the ultra-large capacitance of the ultra-thin LAO layer acting as the dielectric layer. This is distinctly different from the case of epitaxial graphene on SiC substrates, where the realization of giant Hall plateaus relies on the charge transfer between the graphene layer and interface states in SiC. Our results offer an alternative route towards optimizing the quantum Hall performance of graphene, which may find its applications in the further development of quantum resistance metrology.
Tzalenchuk A, Lara-Avila S, Kalaboukhov A, Paolillo S, Syväjärvi M, Yakimova R, Kazakova O, Janssen T J B M, Fal'Ko V I and Kubatkin S 2010 Nat. Nanotechnol.5 186
[9]
Lafont F, Ribeiro-Palau R, Kazazis D, Michon A, Couturaud O, Consejo C, Chassagne T, Zielinski M, Portail M, Jouault B, Schopfer F and Poirier W 2015 Nat. Commun.6 6806
[10]
Ribeiro-Palau R, Lafont F, Brun-Picard J, Kazazis D, Michon A, Cheynis F, Couturaud O, Consejo C, Jouault B, Poirier W and Schopfer F 2015 Nat. Nanotechnol.10 965
Thiel S, Hammerl G, Schmehl A, Schneider C W and Mannhart J 2006 Science313 1942
[17]
Aliaj I, Torre I, Miseikis V, di Gennaro E, Sambri A, Gamucci A, Coletti C, Beltram F, Granozio F M, Polini M, Pellegrini V and Roddaro S 2016 APL Mater.4 066101
[18]
Jnawali G, Huang M, Hsu J F, Lee H, Lee J W, Irvin P, Eom C B, D'Urso B and Levy J 2017 Adv. Mater.29 1603488
Cheng L, Wei L, Liang H, Yan Y, Cheng G, Lv M, Lin T, Kang T, Yu G, Chu J, Zhang Z and Zeng C 2017 Nano Lett.17 6534
[24]
Wang L, Meric I, Huang P Y, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L M, Muller D A, Guo J, Kim P, Hone J, Shepard K L and Dean C R 2013 Science342 614
[25]
Alexander-Webber J A, Huang J, Maude D K, Janssen T J B M, Tzalenchuk A, Antonov V, Yager T, Lara-Avila S, Kubatkin S, Yakimova R and Nicholas R J 2016 Sci. Rep.6 30296
[26]
Yang M, Couturaud O, Desrat W, Consejo C, Kazazis D, Yakimova R, Syväjärvi M, Goiran M, Béard J, Frings P, Pierre M, Cresti A, Escoffier W and Jouault B 2016 Phys. Rev. Lett.117 237702
[27]
Kudrynskyi Z R, Bhuiyan M A, Makarovsky O, Greener J D G, Vdovin E E, Kovalyuk Z D, Cao Y, Mishchenko A, Novoselov K S, Beton P H, Eaves L and Patanè A 2017 Phys. Rev. Lett.119 157701
[28]
Santander-Syro A F, Copie O, Kondo T, Fortuna F, Pailhès S, Weht R, Qiu X G, Bertran F, Nicolaou A, Taleb-Ibrahimi A, Fèvre P L, Herranz G, Bibes M, Reyren N, Apertet Y, Lecoeur P, Barthélémy A and Rozenberg M J 2011 Nature469 189
Li W, Zhou J, Cai S, Yu Z, Zhang J, Fang N, Li T, Wu Y, Chen T, Xie X, Ma H, Yan K, Dai N, Wu X, Zhao H, Wang Z, He D, Pan L, Shi Y, Wang P, Chen W, Nagashio K, Duan X and Wang X 2019 Nat. Electron.2 563