Band Alignment at the Al$_{2}$O$_{3}/\beta$-Ga$_{2}$O$_{3}$ Interface with CHF$_{3}$ Treatment
Hao Liu , Wen-Jun Liu* , Yi-Fan Xiao , Chao-Chao Liu , Xiao-Han Wu , and Shi-Jin Ding
State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China
Abstract :The energy band alignment at the atomic layer deposited Al$_{2}$O$_{3}/\beta$-Ga$_{2}$O$_{3}$ interface with CHF$_{3}$ treatment was characterized by x-ray photoelectron spectroscopy and secondary ion mass spectrometry (SIMS). With additional CHF$_{3}$ plasma treatment, the conduction band offset increases from 1.95${\pm}$0.1 eV to 2.32${\pm}$0.1 eV; and the valence band offset decreases from 0.21${\pm}$0.1 eV to $-$0.16${\pm}$0.1 eV. As a result, the energy band alignment changes from type I to type II. This energy band alignment transition could be attributed to the downshift of the core-level of Ga $3d$, resulting from the Ga–F bond formation in the F-rich interfacial layer, which is confirmed by the SIMS results.
收稿日期: 2020-04-15
出版日期: 2020-06-21
:
73.20.At
(Surface states, band structure, electron density of states)
73.22.-f
(Electronic structure of nanoscale materials and related systems)
73.40.Qv
(Metal-insulator-semiconductor structures (including semiconductor-to-insulator))
71.15.-m
(Methods of electronic structure calculations)
[1] Zhou H, Alghamdi S, Si M et al. 2016 IEEE Electron Device Lett. 37 1411
[2] Higashiwaki M, Sasaki K, Kamimura T et al. 2013 Appl. Phys. Lett. 103 123511
[3] Allen S T, Pribble W L, Sadler R A et al. 1999 1999 IEEE MTT-S International Microwave Symposium Digest (13–19 June 1999 Anaheim, CA, USA) vol 1–4 pp 321–324
[4] Lin M E, Ma Z, Huang F Y et al. 1994 Appl. Phys. Lett. 64 1003
[5] Green A J, Chabak K D, Heller E R et al. 2016 IEEE Electron Device Lett. 37 902
[6] Hwang W S, Verma A, Peelaers H et al. 2014 Appl. Phys. Lett. 104 203111
[7] Wong M H, Sasaki K, Kuramata A et al. 2016 IEEE Electron Device Lett. 37 212
[8] Fleischer M and Meixner H 1993 J. Appl. Phys. 74 300
[9] Lorenz M R, Woods J F and Gambino R J 1967 J. Phys. Chem. Solids 28 403
[10] Carey P H, Ren F, Hays D C et al. 2017 Vacuum 142 52
[11] Kamimura T, Sasaki K, Hoi Wong M et al. 2014 Appl. Phys. Lett. 104 192104
[12] Higashiwaki M, Sasaki K, Kuramata A et al. 2014 Phys. Status Solidi 211 21
[13] Konishi K, Kamimura T, Wong M H et al. 2016 Phys. Status Solidi 253 623
[14] Higashiwaki M, Sasaki K, Murakami H et al. 2016 Semicond. Sci. Technol. 31 034001
[15] Tadjer M J, Mahadik N A, Wheeler V D et al. 2016 ECS J. Solid State Sci. Technol. 5 P468
[16] Zhang H, Jia R, Lei Y et al. 2018 J. Phys. D 51 75104
[17] Kraut E A, Grant R W, Waldrop J R et al. 1980 Phys. Rev. Lett. 44 1620
[18] Sun S, Liu W, Wang Y et al. 2018 Appl. Phys. Lett. 113 031603
[19] Hattori M, Oshima T, Wakabayashi R et al. 2016 Jpn. J. Appl. Phys. 55 1202B6
[20] Liu X, He J, Liu Q et al. 2015 Appl. Phys. Lett. 107 101601
[21] Seaward K L, Moll N J and Stickle W F 1990 J. Electron. Mater. 19 385
[22] Vakulka A, Kova J and Skapin T 2013 Acta Chimica Slovenica 60 521
[1]
. [J]. 中国物理快报, 2023, 40(3): 37102-.
[2]
. [J]. 中国物理快报, 2022, 39(11): 118501-.
[3]
. [J]. 中国物理快报, 2022, 39(6): 67402-.
[4]
. [J]. 中国物理快报, 2022, 39(5): 57301-.
[5]
. [J]. 中国物理快报, 2021, 38(11): 117301-.
[6]
. [J]. 中国物理快报, 2021, 38(7): 77105-.
[7]
. [J]. 中国物理快报, 2021, 38(7): 77301-.
[8]
. [J]. 中国物理快报, 2021, 38(5): 57307-057307.
[9]
. [J]. 中国物理快报, 2021, 38(5): 57306-.
[10]
. [J]. 中国物理快报, 2020, 37(12): 127102-.
[11]
. [J]. 中国物理快报, 2020, 37(11): 117301-.
[12]
. [J]. 中国物理快报, 2020, 37(11): 117303-.
[13]
. [J]. 中国物理快报, 2020, 37(10): 107301-.
[14]
. [J]. 中国物理快报, 2020, 37(8): 87102-.
[15]
. [J]. 中国物理快报, 2020, 37(8): 87103-.