Spin Filter of Graphene Nanoribbon Based Structure
WAN Lang-Hui1, YU Yun-Jin1, WANG Bin2
1College of Physics Science and Technology, Shenzhen University, Shenzhen 518060 2Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong
Spin Filter of Graphene Nanoribbon Based Structure
WAN Lang-Hui1, YU Yun-Jin1, WANG Bin2
1College of Physics Science and Technology, Shenzhen University, Shenzhen 518060 2Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong
Spin-dependent transport properties of the zigzag graphene nano-ribbon (zGNR) based structure Al-zGNR-Al are investigated by abinitio technique where density functional calculation is carried out within the Keldysh non-equilibrium Green's function formalism. The energy band structure of the infinite zigzag ribbon is sensitive to the dangling bonds of carbon atoms on both edge sides. For the three-circle-width zigzag ribbon with one edge monohydrogenated and the other edge dihydrogenated (zGNR(H-H2)), strongly spin-polarized energy bands are found. A spin-down branch is obtained just below the Fermi level while a spin up band appears above it. For the structure Al-zGNR(H-H2)-Al, where three-circle-width and seven-circle-length (3×7) zGNR(H-H2) is coupled by two (100) aluminium electrodes, an obvious spin filter property is found as the bias voltage changes. When the length of the sandwiched zGNR(H-H2) ribbon increases, the spin-up current is strongly restrained especially under higher bias voltage.
Spin-dependent transport properties of the zigzag graphene nano-ribbon (zGNR) based structure Al-zGNR-Al are investigated by abinitio technique where density functional calculation is carried out within the Keldysh non-equilibrium Green's function formalism. The energy band structure of the infinite zigzag ribbon is sensitive to the dangling bonds of carbon atoms on both edge sides. For the three-circle-width zigzag ribbon with one edge monohydrogenated and the other edge dihydrogenated (zGNR(H-H2)), strongly spin-polarized energy bands are found. A spin-down branch is obtained just below the Fermi level while a spin up band appears above it. For the structure Al-zGNR(H-H2)-Al, where three-circle-width and seven-circle-length (3×7) zGNR(H-H2) is coupled by two (100) aluminium electrodes, an obvious spin filter property is found as the bias voltage changes. When the length of the sandwiched zGNR(H-H2) ribbon increases, the spin-up current is strongly restrained especially under higher bias voltage.
(Electronic transport in nanoscale materials and structures)
引用本文:
WAN Lang-Hui;YU Yun-Jin;WANG Bin. Spin Filter of Graphene Nanoribbon Based Structure[J]. 中国物理快报, 2010, 27(8): 87205-087205.
WAN Lang-Hui, YU Yun-Jin, WANG Bin. Spin Filter of Graphene Nanoribbon Based Structure. Chin. Phys. Lett., 2010, 27(8): 87205-087205.
[1] Tans S J, Verschueren A R M and Dekker C 1998 Nature 393 49 [2] Vigolo B, Pénicaud A, Coulon C, Sauder C et al 2000 Science 290 1331 [3] Novoselov K S, Geim A K, Morozov S V, Jiang D et al 2004 Science 306 666 [4] Özyilmaz B, Jarillo-Herrero P, Efetov D, Abanin D A et al 2007 Phys. Rev. Lett. 99 166804 [5] Berger C, Song Z, Li X, Wu X et al 2006 Science 312 1191 [6] Cresti A, Nemec N, Biel B, Niebler G et al 2008 Nano Res. 1 361 [7] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S et al 2009 Rev. Mod. Phys. 81 109 [8] Chen Z, Lin Y M, Rooks M J and Avouris P 2007 Physica E 40 228 [9] Li X, Wang X, Zhang L, Lee Sangwon et al 2008 Science 319 1229 [10] Wang X, Ouyang Y, Li X, Wang H et al 2008 Phys. Rev. Lett. 100 206803 [11] Nakada K, Fujita M, Dresselhaus G and Dresselhaus M S 1996 Phys. Rev. B 54 17954 [12] Zheng H, Wang Z F, Luo T, Shi Q W et al 2007 Phys. Rev. B 75 165414 [13] Sasaki K, Murakami S, Saito R 2006 Appl. Phys. Lett. 88 113110 [14] Son Y W, Cohen M L and Louie S G 2006 Phys. Rev. Lett. 97 216803 [15] Son Y W, Cohen M L and Louie S G 2006 Nature 444 347 [16] Barone V, Hod O and Scuseria G R 2006 Nano Lett. 6 2748 [17] White C T, Li J, Gunlycke D and Mintmire J W 2007 Nano Lett. 7 825 [18] Martins T B, Miwa R H, Silva A and Fazzio A 2007 Phys. Rev. Lett. 98 196803 [19] Yan Q, Huang B, Yu J, Zheng FW et al 2007 Nano Lett. 7 1469 [20] TapasztóL, Dobrik G, Lambin P and BiróL P 2008 Nature Nanotech. 3 397 [21] Biel B, Blase X, Trizon F and Roche S 2009 Phys. Rev. Lett. 102 096803 [22] Kusakabe K and Maruyama M 2003 Phys. Rev. B 67 092406 [23] Lee G and Cho K 2009 Phys. Rev. B 79 165440 [24] Li T C and Lu S 2008 Phys. Rev. B 77 085408 [25] Lee H, Son Y W, Park N, Han S et al Phys. Rev. B 72 174431 [26] Wang X, Liu Z X, Zhang Y L, Li F Y et al 2002 J. Phys.: Condens. Matter 14 10265 [27] Prinz G A 1998 Science 282 1660 [28] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M et al 2001 Science 294 1488 [29] Yang C K, Zhao J and Lu J P 2003 Phys. Rev. Lett. 90 257203 [30] Zheng X H, Rungger I, Zeng Z and Sanvito S 2009 Phys. Rev. Lett. 80 235426 [31] Ordejón P, Artacho E and Soler J M 1996 Phys. Rev. B 53 R10441 [32] Taylor J, Guo H and Wang J 2001 Phys. Rev. B 63 245407 [33] Waldron D, Haney P, Larade B, MacDonald A et al 2006 Phys. Rev. Lett. 96 166804