Single-ZnO-Nanobelt-Based Single-Electron Transistors
JI Xiao-Fan1,2 , XU Zheng1** , CAO Shuo2 , QIU Kang-Sheng2 , TANG Jing2 , ZHANG Xi-Tian3 , XU Xiu-Lai2**
1 Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 1000442 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 1001903 Heilongjiang Key Laboratory for Low-Dimensional System and Mesoscopic Physics, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025
Abstract :We fabricate single electron transistors based on a single ZnO nanobelt using standard micro-fabrication techniques. The transport properties of the devices are characterized at room temperature and at low temperature (4.2 K). At room temperature, the source-drain current increases linearly as the bias voltage increases, indicating a good ohmic contact in the transistors. At 4.2 K, a Coulomb blockade regime is observed up to a bias voltage of a few millivolts. With scanning the back gate voltage, Coulomb oscillations can be clearly resolved with a period around 1 V. From the oscillations, the charging energy for the single electron transistor is calculated to be about 10 meV, which suggests that confined quantum dots exist with sizes around 35 nm in diameter. The irregular Coulomb diamonds are observed due to the multi-tunneling junctions between dots in the nanobelt.
出版日期: 2014-05-26
:
73.23.Hk
(Coulomb blockade; single-electron tunneling)
72.80.Ey
(III-V and II-VI semiconductors)
85.35.Gv
(Single electron devices)
引用本文:
. [J]. 中国物理快报, 2014, 31(06): 67303-067303.
JI Xiao-Fan, XU Zheng, CAO Shuo, QIU Kang-Sheng, TANG Jing, ZHANG Xi-Tian, XU Xiu-Lai. Single-ZnO-Nanobelt-Based Single-Electron Transistors. Chin. Phys. Lett., 2014, 31(06): 67303-067303.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/31/6/067303
或
https://cpl.iphy.ac.cn/CN/Y2014/V31/I06/67303
[1] Ozgur U et al 2005 J. Appl. Phys. 98 041301 [2] Utama M I B et al 2012 Nanoscale 4 1422 [3] Kim D M and Jeong Y H 2014 Nanowire Field Effect Transistors: Principles and Applications (New York: Springer) [4] Arnold M S, Avouris P, Pan Z W and Wang Z L 2003 J. Phys. Chem. B 107 659 [5] He J H, Lin Y H, McConney M E, Tsukruk V V, Wang Z L and Bao G 2007 J. Appl. Phys. 102 084303 [6] Soci C, Zhang A, Xiang B, Dayeh S A, Aplin D P R, Park J, Bao X Y, Lo Y H and Wang D 2007 Nano Lett. 7 1003 [7] Sadek A Z, Choopun S, Wlodarski W, Ippolito S J and Kalantarzadeh K 2007 IEEE Sens. J. 7 919 [8] Lin C, Lin H, Li J and Li X 2008 J. Alloys Compd. 462 175 [9] Song J, Zhou J and Wang Z L 2006 Nano Lett. 6 1656 [10] Chiu S P, Lin Y H and Lin J J 2009 Nanotechnology 20 015203 [11] Van de Walle C G 2000 Phys. Rev. Lett. 476 331 [12] Zhang S B, Wei S H and Zunger A 2001 Phys. Rev. B 63 075205 [13] Xu X L, Lau S P, Chen J S, Chen G Y and Tay B K 2001 J. Cryst. Growth 223 201 [14] Wan Q, Huang J, Lu A X and Wang T H 2008 Appl. Phys. Lett. 93 103109 [15] Thompson R S, Li D D, Witte C M and Lu J G 2009 Nano Lett. 9 3991 [16] Thelander C, Martensson T, Bjork M T, Ohlsson B J, Larsson M W, Wallenberg L R and Samuelson L 2003 Appl. Phys. Lett. 83 2052 [17] Kouwenhoven L P, Johnson A T, Vandervaart N C, Harmans C and Foxon C T 1991 Phys. Rev. Lett. 67 1626 [18] Beenakker C W J 1991 Phys. Rev. B 44 1646 [19] Meirav U, Kastner M A and Wind S J 1990 Phys. Rev. Lett. 65 771 [20] Hofheinz M, Jehl X, Sanquer M, Molas G, Vinet M and Deleonibus S 2006 Appl. Phys. Lett. 89 143504 [21] Wang T H, Li H W and Zhou J M 2001 Chin. Phys. 10 844 [22] Postma H W C, Teepen T, Yao Z, Grifoni M and Dekker C 2001 Science 293 76 [23] Stampfer C, Schurtenberger E, Molitor F, Guttinger J, Ihn T and Ensslin K 2008 Nano Lett. 8 2378 [24] Xu X L, Irvine A C, Yang Y, Zhang X T and Williams D A 2010 Phys. Rev. B 82 195309 [25] Vanwees B J, Vanhouten H, Beenakker C W J, Williamson J G, Kouwenhoven L P, Vandermarel D and Foxon C T 1988 Phys. Rev. Lett. 60 848 [26] Abergel D S L, Apalkov V, Berashevich J, Ziegler K and Chakraborty T 2010 Adv. Phys. 59 261 [27] Zhang X T, Lu H Q, Gao H, Wang X J, Xu H Y, Li Q and Hark S K 2009 Cryst. Growth Des. 9 364 [28] Lu H q, Gao H, Zhang E and Zhang Xt 2008 J. Synth. Cryst. 37 376 [29] Grabert H 1991 Z. Phys. B: Condens. Matter 85 319
[1]
. [J]. 中国物理快报, 2020, 37(1): 17402-017402.
[2]
. [J]. 中国物理快报, 2019, 36(12): 127301-127301.
[3]
. [J]. 中国物理快报, 2015, 32(11): 117201-117201.
[4]
. [J]. 中国物理快报, 2014, 31(12): 127304-127304.
[5]
. [J]. 中国物理快报, 2014, 31(04): 47201-047201.
[6]
. [J]. 中国物理快报, 2013, 30(7): 77303-077303.
[7]
. [J]. 中国物理快报, 2013, 30(5): 57302-057302.
[8]
HUANG Rui**,MING Shan-Wen,WANG Yong. The Kondo and Fano Effects in Triple Quantum Dots Coupled to Noncollinear Ferromagnetic Leads [J]. 中国物理快报, 2012, 29(4): 47201-047201.
[9]
FANG Dong-Kai** , WU Shao-Quan, ZOU Cheng-Yi, ZHAO Guo-Ping. Effect of Electronic Correlations on Magnetotransport through a Parallel Double Quantum Dot [J]. 中国物理快报, 2012, 29(3): 37303-037303.
[10]
LI Xiu-Ping;WEI Hua-Rong;XU Li-Ping;GONG Jian-Ping;YAN Wei-Xian
. Tunneling Processes in Optically Excited Quantum Dots [J]. 中国物理快报, 2011, 28(10): 107306-107306.
[11]
FANG Zhong-Hui;ZHANG Xian-Gao;CHEN Kun-Ji;QIAN Xin-Ye;XU Jun;HUANG Xin-Fan;HE Fei. Observation of Coulomb Oscillations with Single Dot Characteristics in Heavy Doped Ultra Thin SOI Nanowires [J]. 中国物理快报, 2010, 27(5): 57304-057304.
[12]
CHEN Jia-Feng;WU Shao-Quan;HOU Tao;ZHAO Guo-Ping. Kondo and Coulomb Interaction Effects in Spin-Polarized Transport through Double Quantum Dots [J]. 中国物理快报, 2010, 27(4): 47201-047201.
[13]
CAO Gang;LI Hai-Ou;TU Tao;ZHOU Cheng;HAO Xiao-Jie;GUO Guang-Can;GUO Guo-Ping. Electron States in Parallel Double Quantum Dots with a Tunable Inter-Dot Coupling [J]. 中国物理快报, 2009, 26(9): 97302-097302.
[14]
ZHANG Xu-Ming;CHEN Xiao-Shuang;LU Wei. Phase Interference in a Multi-level Quantum-Dot System [J]. 中国物理快报, 2009, 26(4): 47301-047301.
[15]
ZHOU Li-Ling;LI Shu-Shen;ZENG Zhao-Yang. Maximal Heat Generation in Nanoscale Systems [J]. 中国物理快报, 2009, 26(3): 37304-037304.