AlGaN Channel High Electron Mobility Transistors with Ultra-Low Drain-Induced-Barrier-Lowering Coefficient
HA Wei, ZHANG Jin-Cheng** , ZHAO Sheng-Lei, GE Sha-Sha, WEN Hui-Juan, ZHANG Chun-Fu, MA Xiao-Hua, HAO Yue
Key Laboratory of Wide Band Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071
Abstract :The conventional AlGaN/GaN high electron mobility transistor (HEMT), the AlGaN/GaN/AlGaN HEMT, and the Alx Ga1?x N/Aly Ga1?y N HEMT are fabricated on sapphire substrates to study the drain-induced barrier-lowering (DIBL) effect. It is found that the Alx Ga1?x N/Aly Ga1?y N HEMT with AlGaN channel has the lowest DIBL coefficient of 6.7 mV/V compared with the other two HEMTs. This is attributed to the best two-dimensional electron gas confinement of the Alx Ga1?x N/Aly Ga1?y N structure. This opinion is further confirmed by the conduction band diagrams and electron distribution calculated from the one-dimensional Poisson–Schr?dinger equation.
收稿日期: 2013-05-22
出版日期: 2013-12-13
:
72.80.Ey
(III-V and II-VI semiconductors)
85.30.De
(Semiconductor-device characterization, design, and modeling)
85.30.Tv
(Field effect devices)
引用本文:
. [J]. 中国物理快报, 2013, 30(12): 127201-127201.
HA Wei, ZHANG Jin-Cheng, ZHAO Sheng-Lei, GE Sha-Sha, WEN Hui-Juan, ZHANG Chun-Fu, MA Xiao-Hua, HAO Yue. AlGaN Channel High Electron Mobility Transistors with Ultra-Low Drain-Induced-Barrier-Lowering Coefficient. Chin. Phys. Lett., 2013, 30(12): 127201-127201.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/30/12/127201
或
https://cpl.iphy.ac.cn/CN/Y2013/V30/I12/127201
[1] Zhang J F, Zhang J C and Hao Y 2004 Chin. Phys. 13 1334 [2] Hao Z B, Guo T Y, Zhang L C and Luo Y 2006 Chin. Phys. Lett. 23 497 [3] Wang M J, Shen B, Xu F J, Wang Y, Xu J, Huang S, Yang Z J, Xu K and Zhang G Y 2007 Appl. Phys. A 88 715 [4] Chen W, Zhou C and Chen K J 2010 Electron. Lett. 46 24 [5] Nanjo T, Takeuchi M, Suita M, Abe Y, Oishi T, Tokuda Y and Aoyagi Y 2008 Appl. Phys. Express 1 011101 [6] Nanjo T, Takeuchi M, Suita M, Abe Y, Oishi T, Tokuda Y and Aoyagi Y 2008 Appl. Phys. Lett. 92 263502 [7] Nanjo T, Suita M, Oishi T, Abe Y, Yagyu E and Tokuda Y 2009 Electron. Lett. 45 424 [8] Tokuda H, Hatano M, Yafune N, Hashimoto S, Akita K, Yamamoto Y and Kuzuhara M 2010 Appl. Phys. Express 3 121003 [9] Ma J C, Zhang J C, Xue J S, Lin Z Y, Liu Z Y, Xue X Y, Ma X H and Hao Y 2012 J. Semicond. 33 014002 [10] Meng F N, Zhang J C, Zhou H, Ma J C, Xue J S, Dang L S, Zhang L X and Hao Y 2012 J. Appl. Phys. 112 023707 [11] Liu J, Zhou Y G, Zhu J, Lau K M and Chen K J 2006 IEEE Electron Device Lett. 27 10 [12] Raman A, Dasgupta S, Rajan D, Speck J S and Mishira U K 2008 Jpn. J. Appl. Phys. 47 3359 [13] Liu Z H, Ng G I, Arulkumaran S, Maung Y K T, Teo K L, Foo S C and Sahmuganathan V 2009 Appl. Phys. Lett. 95 223501 [14] Zhao D G, Jiang D S, Yang H, Zhu J J, Liu Z S, Zhang S M and Liang J W 2006 Appl. Phys. Lett. 88 241917
[1]
. [J]. 中国物理快报, 2020, 37(8): 87803-.
[2]
. [J]. 中国物理快报, 2017, 34(12): 128501-.
[3]
. [J]. 中国物理快报, 2015, 32(11): 117202-117202.
[4]
. [J]. 中国物理快报, 2015, 32(07): 77205-077205.
[5]
. [J]. 中国物理快报, 2015, 32(03): 37202-037202.
[6]
. [J]. 中国物理快报, 2014, 31(07): 77202-077202.
[7]
. [J]. 中国物理快报, 2014, 31(06): 67303-067303.
[8]
. [J]. 中国物理快报, 2014, 31(03): 37201-037201.
[9]
. [J]. 中国物理快报, 2013, 30(8): 87203-087203.
[10]
. [J]. 中国物理快报, 2012, 29(10): 107202-107202.
[11]
. [J]. 中国物理快报, 2012, 29(8): 87201-087201.
[12]
. [J]. 中国物理快报, 2012, 29(8): 87203-087203.
[13]
. [J]. 中国物理快报, 2012, 29(8): 87204-087204.
[14]
CAO Xiao-Long;WANG Yu-Ye;XU De-Gang;**;ZHONG Kai;LI Jing-Hui;LI Zhong-Yang;ZHU Neng-Nian;YAO Jian-Quan;. THz-Wave Difference Frequency Generation by Phase-Matching in GaAs/Alx Ga1−x As Asymmetric Quantum Well [J]. 中国物理快报, 2012, 29(1): 14207-014207.
[15]
LIU Sheng-Hou;CAI Yong**;GONG Ru-Min;WANG Jin-Yan;ZENG Chun-Hong;SHI Wen-Hua;FENG Zhi-Hong;WANG Jing-Jing;YIN Jia-Yun;Cheng P. Wen;QIN Hua;ZHANG Bao-Shun
. Enhancement-Mode AlGaN/GaN High Electron Mobility Transistors Using a Nano-Channel Array Structure [J]. 中国物理快报, 2011, 28(7): 77202-077202.