Al0.30 Ga0.70 N/GaN/Al0.07 Ga0.93 N Double Heterostructure High Electron Mobility Transistors with a Record Saturation Drain Current of 1050 mA/mm
LI Xiang-Dong, ZHANG Jin-Cheng** , GUO Zhen-Xing, JIANG Hai-Qing, ZOU Yu, ZHANG Wei-Hang, HE Yun-Long, JIANG Ren-Yuan, ZHAO Sheng-Lei, HAO Yue
Key Lab of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071
Abstract :We report Al0.30 Ga0.70 N/GaN/Al0.07 Ga0.93 N double heterostructure high electron mobility transistors with a record saturation drain current of 1050 mA/mm. By optimizing the graded buffer layer and the GaN channel thickness, both the crystal quality and the device performance are improved significantly, including electron mobility promoted from 1535 to 1602 cm2 /V?s, sheet carrier density improved from 0.87×1013 to 1.15×1013 cm?2 , edge dislocation density reduced from 2.4×109 to 1.3×109 cm?2 , saturation drain current promoted from 757 to record 1050 mA/mm, mesa leakage reduced by two orders in magnitude, and breakdown voltage promoted from 72 to 108 V.
收稿日期: 2015-07-07
出版日期: 2015-12-01
:
72.80.Ey
(III-V and II-VI semiconductors)
85.30.De
(Semiconductor-device characterization, design, and modeling)
85.30.Tv
(Field effect devices)
引用本文:
. [J]. 中国物理快报, 2015, 32(11): 117202-117202.
LI Xiang-Dong, ZHANG Jin-Cheng, GUO Zhen-Xing, JIANG Hai-Qing, ZOU Yu, ZHANG Wei-Hang, HE Yun-Long, JIANG Ren-Yuan, ZHAO Sheng-Lei, HAO Yue. Al0.30 Ga0.70 N/GaN/Al0.07 Ga0.93 N Double Heterostructure High Electron Mobility Transistors with a Record Saturation Drain Current of 1050 mA/mm. Chin. Phys. Lett., 2015, 32(11): 117202-117202.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/32/11/117202
或
https://cpl.iphy.ac.cn/CN/Y2015/V32/I11/117202
[1] Chen W J, Wong K Y, Huang W and Chen K J 2008 Appl. Phys. Lett. 92 253501 [2] Chen W J, Wong K Y and Chen K J 2009 IEEE Electron Device Lett. 30 430 [3] Maeda N, Saitoh T, Tsubaki K, Nishida T and Kobayashi N 2000 Appl. Phys. Lett. 76 3118 [4] Maeda N, Saitoh T, Tsubaki K, Nishida T and Kobayashi N 2001 Mater. Sci. Eng. B 82 232 [5] Cordier Y, Semond F, Hugues M, Natali F, Lorenzini P, Haas H, Chenot S, Laugt M, Tottereau O, Vennegues P and Massies J 2005 J. Cryst. Growth 278 393 [6] Liu J, Zhou Y, Zhu J, Lau K M and Chen K J 2006 IEEE Electron Device Lett. 27 10 [7] Shinohara K, Regan D, Milosavljevic I, Corrion A L, Brown D F, Willadsen P J, Butler C, Schmitz A, Kim S, Lee V, Ohoka A, Asbeck P M and Micovic M 2011 IEEE Electron Device Lett. 32 1074 [8] Meng F, Zhang J, Zhou H, Ma J, Xue J, Dang L, Zhang L, Lu M, Ai S, Li X and Hao Y 2012 J. Appl. Phys. 112 023707 [9] Peng E, Wang X, Xiao H, Wang C, Yin H, Chen H, Feng C, Jiang L, Hou X and Wang Z 2013 J. Alloys Compd. 576 48 [10] Wang X, Huang S, Zheng Y, Wei K, Chen X, Zhang H and Liu X 2014 IEEE Trans. Electron Devices 61 1341 [11] Lu C, Feng S, Wang D, Zhu X, Fan Z and Morkoc H 2004 IEEE 7th Int. Conf. Solid-State Integrated Circuits Technol. 3 2284 [12] Ma J, Zhang J, Xue J, Lin Z, Liu Z, Xue X, Ma X and Hao Y 2012 J. Semicond. 33 014002 [13] Bahat-Treidel E, Hilt O, Brunner F, Wurfl J and Trankle G 2008 IEEE Trans. Electron Devices 55 3354 [14] Wang C K, Chang S J, Su Y K, Chiou Y Z, Kuo C H, Chang C S, Lin T K, Ko T K and Tang J J 2005 Jpn. J. Appl. Phys. 44 2458 [15] Moram M A and Vickers M E 2009 Rep. Prog. Phys. 72 036502 [16] Ou X X 2011 Master Dissertation (Xi'an: Xidian University) (in Chinese) [17] Yu H, Lisesivdin S B, Bolukbas B, Kelekci O, Ozturk M K, Ozcelik S, Caliskan D, Ozturk M, Cakmak H, Demirel P and Ozbay E 2010 Phys. Status Solidi A 207 2593 [18] Bahat-Treidel E, Hilt O, Brunner F, Sidorov V, Würfl J and Tr?nkle G 2010 IEEE Trans. Electron Devices 57 3050 [19] Zanandrea A, Bahat-Treidel E, Rampazzo F, Stocco A, Meneghini M, Zanoni E, Hilt O, Ivo P, Wuerfl J and Meneghesso G 2012 Microelectron. Reliab. 52 2426 [20] Liu L, Lo C, Xi Y, Ren F, Pearton S J, Laboutin O, Cao Y, Johnson J W and Kravchenko I I 2013 J. Vac. Sci. Technol. B 31 011805 [21] Ravikiran L, Dharmarasu N, Radhakrishnan K, Agrawa M, Lin Y, Arulkumaran S, Vicknesh S and Ng G I 2015 J. Appl. Phys. 117 025301 [22] Miller E J, Dang X Z and Yu E T 2000 J. Appl. Phys. 88 5951 [23] Liu Y, Singh S P, Ngoo Y J, Kyaw L M, Bera M K, Lo Q Q and Chor E F 2014 J. Vac. Sci. Technol. B 32 032201
[1]
. [J]. 中国物理快报, 2020, 37(8): 87803-.
[2]
. [J]. 中国物理快报, 2017, 34(12): 128501-.
[3]
. [J]. 中国物理快报, 2015, 32(07): 77205-077205.
[4]
. [J]. 中国物理快报, 2015, 32(03): 37202-037202.
[5]
. [J]. 中国物理快报, 2014, 31(07): 77202-077202.
[6]
. [J]. 中国物理快报, 2014, 31(06): 67303-067303.
[7]
. [J]. 中国物理快报, 2014, 31(03): 37201-037201.
[8]
. [J]. 中国物理快报, 2013, 30(12): 127201-127201.
[9]
. [J]. 中国物理快报, 2013, 30(8): 87203-087203.
[10]
. [J]. 中国物理快报, 2012, 29(10): 107202-107202.
[11]
. [J]. 中国物理快报, 2012, 29(8): 87201-087201.
[12]
. [J]. 中国物理快报, 2012, 29(8): 87203-087203.
[13]
. [J]. 中国物理快报, 2012, 29(8): 87204-087204.
[14]
CAO Xiao-Long;WANG Yu-Ye;XU De-Gang;**;ZHONG Kai;LI Jing-Hui;LI Zhong-Yang;ZHU Neng-Nian;YAO Jian-Quan;. THz-Wave Difference Frequency Generation by Phase-Matching in GaAs/Alx Ga1−x As Asymmetric Quantum Well [J]. 中国物理快报, 2012, 29(1): 14207-014207.
[15]
LIU Sheng-Hou;CAI Yong**;GONG Ru-Min;WANG Jin-Yan;ZENG Chun-Hong;SHI Wen-Hua;FENG Zhi-Hong;WANG Jing-Jing;YIN Jia-Yun;Cheng P. Wen;QIN Hua;ZHANG Bao-Shun
. Enhancement-Mode AlGaN/GaN High Electron Mobility Transistors Using a Nano-Channel Array Structure [J]. 中国物理快报, 2011, 28(7): 77202-077202.