Growth of a-Plane InN Film and Its THz Emission
WANG Guang-Bing1 , ZHAO Guo-Zhong3 , ZHENG Xian-Tong1 , WANG Ping1 , CHEN Guang1 , RONG Xin1 , WANG Xin-Qiang1,2**
1 State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 1008712 Collaborative Innovation Center of Quantum Matter, Beijing 1008713 Department of Physics, Capital Normal University, Beijing 100048
Abstract :We report the growth of a-plane InN on an r-plane sapphire substrate by plasma-assisted molecular-beam epitaxy. It is found that the a-plane InN is successfully grown by using a GaN buffer layer, which has been confirmed by reflection high-energy electron diffraction, x-ray diffraction and Raman scattering measurements. The Hall effect measurement shows that the electron mobility of the as-grown a-plane InN is about 406 cm2 /V?s with a residual electron concentration of 5.7×1018 cm?3 . THz emission from the a-plane InN film is also studied, where it is found that the emission amplitude is inversely proportional to the conductivity.
出版日期: 2014-06-30
引用本文:
. [J]. 中国物理快报, 2014, 31(07): 77202-077202.
WANG Guang-Bing, ZHAO Guo-Zhong, ZHENG Xian-Tong, WANG Ping, CHEN Guang, RONG Xin, WANG Xin-Qiang. Growth of a-Plane InN Film and Its THz Emission. Chin. Phys. Lett., 2014, 31(07): 77202-077202.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/31/7/077202
或
https://cpl.iphy.ac.cn/CN/Y2014/V31/I07/77202
[1] Wilke I 2007 Proc. SPIE 6772 67720N [2] Ascázubi R, Wilke I, Lu H and Schaff W J 2004 Appl. Phys. Lett. 84 4810 [3] Liu K, Xu J, Yuan T and Zhang X C 2006 Phys. Rev. B 73 155330 [4] Ahn H, Ku Y P, Chuang C H, Pan C L, Lin H W, Hong Y L and Gwo S 2008 Appl. Phys. Lett. 92 102103 [5] Chern G D, Readinger E E, Shen H, Wraback M, Galllinat C S, Konlmuller G and Speck J S 2006 Appl. Phys. Lett. 89 141115 [6] Ahn H, Ku Y P, Wang Y C, Chuang C H, Gwo S and Pan C L 2007 Appl. Phys. Lett. 91 163105 [7] Cimalla V, Pradarutti B, Matthaus G, Bruckner C, Riehemann S, Notni G, Nolte S, Tunnermann A, Lebedev V and Ambacher O 2007 Phys. Status Solidi B 244 1829 [8] Wilke I, Ascazubi R, Lu H and Schaff W J 2008 Appl. Phys. Lett. 93 221113 [9] Pradarutti B, Matthaus G, Bruckner C, Riehemann S, Notni G, Nolte S, Cimalla V, Lebedev V, Ambacher O and Tunnermann A 2006 Proc. SPIE 6194 61940I [10] Dhar S and Ghosh S 2002 Appl. Phys. Lett. 80 4519 [11] Wang X Q, Liu S T, Ma N, Feng L, Chen G, Xu F J, Tang N, Huang S, K Chen J, Zhou S Q and Shen B 2012 Appl. Phys. Express 5 015502 [12] Su T, Jia X, Zhao G, Han P, Wang Y, Li Y, Zhou B, Lu X, Xu Y, Xie D, Wu J and Chen J 2009 Spectrochim. Acta Part. A 73 884 [13] Zhang X C, Jin Y and Ma X 1992 Appl. Phys. Lett. 61 2764 [14] Wang X Q, Che S B, Ishitani Y and Yoshikawa A 2006 Jpn. J. Appl. Phys. 45 L730 [15] Hirai K A, Wu F, Gallinat C S, Metcalfe G D, Shen H, Wraback M and Speck J S 2008 Appl. Phys. Lett. 93 171902 [16] Cimalla V, Pezoldt J, Ecke G, Kosiba R, Ambacher O, Spie L, Teichert G, Lu H and Schaff W J 2003 Appl. Phys. Lett. 83 3468 [17] Ni X, Fu Y, Moon Y T, Biyikli N and Morkoc H 2006 J. Cryst. Growth 290 166 [18] Kaczmarczyk G, Kaschner A, Reich S, Hoffmann A, Thomsen C, As D J, Lima A P, Schikora D, Lischka K, Averbeck R and Riechert H 2000 Appl. Phys. Lett. 76 2122 [19] Davydov V Y, Emtsev V V, Goncharuk I N, Smirnov A N, Petrikov V D, Mamutin V V, Vekshin V A, Ivanov S V, Smirnov M B and Inushima T 1999 Appl. Phys. Lett. 75 3297 [20] Zhu X L, Guo L W, Peng M Z, Ge B H, Zhang J, Ding G J, Jia H Q, Chen H and Zhou J M 2008 J. Cryst. Growth 310 3726 [21] Lu H, Schaff W J, Eastman L F, Wu J, Walukiewicz W, Cimalla V and Ambacher O 2003 Appl. Phys. Lett. 83 1136 [22] Ajagunna A O, lliopoulos E, Tsiakatuuras G, Tsagaraki K, Androulidaki M and Georgakilas A 2010 J. Appl. Phys. 107 024506 [23] Metcalfe G D, Shen H, Wraback M, Koblmuller G, Gallinat C, Wu F and Speck J S 2010 Appl. Phys. Express 3 092201 [24] Wang X Q, Zhao G Z, Isjitani Y, Yoshikawa A and Shen B 2010 Appl. Phys. Lett. 96 061907
[1]
. [J]. 中国物理快报, 2020, 37(8): 87803-.
[2]
. [J]. 中国物理快报, 2017, 34(12): 128501-.
[3]
. [J]. 中国物理快报, 2015, 32(11): 117202-117202.
[4]
. [J]. 中国物理快报, 2015, 32(07): 77205-077205.
[5]
. [J]. 中国物理快报, 2015, 32(03): 37202-037202.
[6]
. [J]. 中国物理快报, 2014, 31(06): 67303-067303.
[7]
. [J]. 中国物理快报, 2014, 31(03): 37201-037201.
[8]
. [J]. 中国物理快报, 2013, 30(12): 127201-127201.
[9]
. [J]. 中国物理快报, 2013, 30(8): 87203-087203.
[10]
. [J]. 中国物理快报, 2012, 29(10): 107202-107202.
[11]
. [J]. 中国物理快报, 2012, 29(8): 87201-087201.
[12]
. [J]. 中国物理快报, 2012, 29(8): 87203-087203.
[13]
. [J]. 中国物理快报, 2012, 29(8): 87204-087204.
[14]
CAO Xiao-Long;WANG Yu-Ye;XU De-Gang;**;ZHONG Kai;LI Jing-Hui;LI Zhong-Yang;ZHU Neng-Nian;YAO Jian-Quan;. THz-Wave Difference Frequency Generation by Phase-Matching in GaAs/Alx Ga1−x As Asymmetric Quantum Well [J]. 中国物理快报, 2012, 29(1): 14207-014207.
[15]
LIU Sheng-Hou;CAI Yong**;GONG Ru-Min;WANG Jin-Yan;ZENG Chun-Hong;SHI Wen-Hua;FENG Zhi-Hong;WANG Jing-Jing;YIN Jia-Yun;Cheng P. Wen;QIN Hua;ZHANG Bao-Shun
. Enhancement-Mode AlGaN/GaN High Electron Mobility Transistors Using a Nano-Channel Array Structure [J]. 中国物理快报, 2011, 28(7): 77202-077202.