摘要A bilayer stacked InAs/GaAs quantum dot structure grown by molecular beam epitaxy on an In0.05Ga0.95As metamorphic buffer is investigated. By introducing a InGaAs:Sb cover layer on the upper InAs quantum dots (QDs) layers, the emission wavelength of the QDs is extended successfully to 1.533μm at room temperature, and the density of the QDs is in the range of 4×109-8×109cm-2. Strong photoluminescence (PL) intensity with a full width at half maximum of 28.6meV of the PL spectrum shows good optical quality of the bilayer QDs. The growth of bilayer QDs on metamorphic buffers offers a useful way to extend the wavelengths of GaAs-based materials for potential applications in optoelectronic and quantum functional devices.
Abstract:A bilayer stacked InAs/GaAs quantum dot structure grown by molecular beam epitaxy on an In0.05Ga0.95As metamorphic buffer is investigated. By introducing a InGaAs:Sb cover layer on the upper InAs quantum dots (QDs) layers, the emission wavelength of the QDs is extended successfully to 1.533μm at room temperature, and the density of the QDs is in the range of 4×109-8×109cm-2. Strong photoluminescence (PL) intensity with a full width at half maximum of 28.6meV of the PL spectrum shows good optical quality of the bilayer QDs. The growth of bilayer QDs on metamorphic buffers offers a useful way to extend the wavelengths of GaAs-based materials for potential applications in optoelectronic and quantum functional devices.
[1] Huffaker D L, Park G, Zou Z and Shchekin O B 1998 Appl. Phys. Lett. 73 2564 [2] Shernyakov Yu M, Bedarev D A, Kondrat'eva E Y, Kop'ev P Set al 1999 Electron. Lett. 35 898 [3] Wu D H, Wang H L, Wu B P, Ni H Q et al 2008 Electron.Lett. 44 474 [4] T{\aangring I, Ni H Q, Wu B P, Wu D H et al 2007 Appl. Phys. Lett. 91 221101 [5] Da Silva M J, Quivy A A, Martini S and Lamas T E et al2003 Appl. Phys. Lett. 82 2646 [6] Kettler T, Karachinsky L Y, Ledentsov N N and Shchukin V Aet al 2006 Appl. Phys. Lett. 89 041113 [7] Li L H, Rossetti M, Fiore A and Patriarche G 2006 Electron. Lett. 42 638 [8] Kidd P, Dunstan D J, Colson H G, Lourenco M A et al 1996 J. Cryst. Growth 169 649 [9] Wu B P, Wu D H, Ni H Q, Huang S S et al 2007 Chin.Phys. Lett. 24 3543 [10] Harmand J C, Li L H, Patriarche G and Travers L 2004 Appl. Phys. Lett. 84 3981 [l1] Howe P, Le Ru E C, Clarke E, Abbey B et al 2003 J.Appl. Phys. 95 2998 [12] Drucker J 1993 Phys. Rev. B 48 18203 [13] Leonard D, Pond K and Petroff P M 1994 Phys. Rev. B 50 11687 [14] Le Ru E C, Howe P, Jones T S and Murray R 1994 Phys.Rev. B 67 165303 [15] Zinoni C, Alloying B, Monat C, Zwiller V et al 2006 Appl. Phys. Lett. 88 131102