Second-Order Correlation Function for Asymmetric-to-Symmetric Transitions due to Spectrally Indistinguishable Biexciton Cascade Emission
WU Xue-Fei1, DOU Xiu-Ming1, DING Kun1, ZHOU Peng-Yu1, NI Hai-Qiao1, NIU Zhi-Chuan1, ZHU Hai-Jun1, JIANG De-Sheng1, ZHAO Cui-Lan2, SUN Bao-Quan1**
1State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 2College of Physics and Electronic Information, Inner Mongolia University for Nationalities, Tongliao 028043
Abstract:We report the observed photon bunching statistics of biexciton cascade emission at zero time delay in single quantum dots by second-order correlation function g(2)(τ) measurements under continuous wave excitation. It is found that the bunching phenomenon is independent of the biexciton binding energy when it varies from 0.59 meV to nearly zero. The photon bunching takes place when the exciton photon is not spectrally distinguishable from the biexciton photon, and either of them can trigger the 'start' in a Hanbury–Brown and Twiss setup. However, if the exciton energy is spectrally distinguishable from the biexciton, the photon statistics will become asymmetric and a cross-bunching lineshape can be obtained. The theoretical calculations based on a model of three-level rate-equation analysis are consistent with the result of g(2)(τ) correlation function measurements.
[1] Moreau E, Robert I, Manin L, Thierry-Mieg V, Gérard J M and Abram I 2001 Phys. Rev. Lett.87 183601 [2] Schmieder R W and Marrus R 1970 Phys. Rev. Lett.25 1692 [3] Baier M H, Malko A, Pelucchi E, Oberli D Y and Kapon E 2006 Phys. Rev. B 73 205321 [4] Kiraz A, F?lth S, Becher C, Gayral B, Schoenfeld W V, Petroff P M, Zhang L D, Hu E and Imamo?lu A 2002 Phys. Rev. B 65 161303 [5] Zalialiutdinov T, Solovyev D, Labzowsky L and Plunien G 2014 Phys. Rev. A 89 052502 [6] Nakajima H, Kumano H, Iijima H, Odashima S and Suemune I 2013 Phys. Rev. B 88 045324 [7] Ota Y, Iwamoto S, Kumagai N and Arakawa Y 2011 Phys. Rev. Lett.107 233602 [8] Brune M, Raimond J M, Goy P, Davidovich L and Haroche S 1987 Phys. Rev. Lett.59 1899 [9] Callsen G, Carmele A, H?nig G, Kindel C, Brunnmeier J, Wagner M R, Stock E, Reparaz J S, Schliwa A, Reitzenstein S, Knorr A, Hoffmann A, Kako S and Arakawa Y 2013 Phys. Rev. B 87 245314 [10] Lange W, Agarwal G S and Walther H 1996 Phys. Rev. Lett.76 3293 [11] Lipeles M, Novick R and Tolk N 1965 Phys. Rev. Lett.15 690 [12] Wu X F, Dou X M, Ding K, Zhou P Y, Ni H Q, Niu Z C, Jiang D S and Sun B Q 2013 Appl. Phys. Lett.103 252108 [13] Zhou P Y, Wu X F, Ding K, Dou X M, Zha G W, Ni H Q, Niu Z C, Zhu H J, Jiang D S, Zhao C L and Sun B Q 2015 J. Appl. Phys.117 014304 [14] Wu X F, Wei H, Dou X M, Ding K, Ni H Q, Niu Z C, Ji Y, Li S S, Jiang D S, Guo G C, He L X and Sun B Q 2014 Europhys. Lett.107 27008 [15] Kuroda T, Belhadj T, Abbarchi M, Mastrandrea C, Gurioli M, Mano T, Ikeda N, Sugimoto Y, Asakawa K, Koguchi N, Sakoda K, Urbaszek B, Amand T and Marie X 2009 Phys. Rev. B 79 035330 [16] Chang X Y, Dou X M, Sun B Q, Xiong Y H, Niu Z C, Ni H Q and Jiang D S 2009 J. Appl. Phys.106 103716 [17] Loudon R 2000 Quantum Theory Light 3rd edn (Oxford: Oxford University Press) chap 8 p 365 [18] Sallen G, Tribu A, Aichele T, André R, Besombes L, Bougerol C, Richard M, Tatarenko S, Kheng K and Poizat J Ph 2010 Nat. Photon.4 696 [19] Robinson H D and Goldberg B B 2000 Phys. Rev. B 61 R5086