摘要A class of measurement phase operators of dual-mode is defined and their properties in a class of entangle coherent states are investigated. Numerical results indicate that the entangle coherent states display some non-classical squeezed effects.
Abstract:A class of measurement phase operators of dual-mode is defined and their properties in a class of entangle coherent states are investigated. Numerical results indicate that the entangle coherent states display some non-classical squeezed effects.
HOU Shen-Yong**;YANG Kuo
. Properties of the Measurement Phase Operator in Dual-Mode Entangle Coherent States[J]. 中国物理快报, 2011, 28(6): 64203-064203.
HOU Shen-Yong**, YANG Kuo
. Properties of the Measurement Phase Operator in Dual-Mode Entangle Coherent States. Chin. Phys. Lett., 2011, 28(6): 64203-064203.
[1] Loudon R 1973 The Quantum Theory of Light (Oxford: Oxford University)
[2] Barnett S M and Pegg D T 1986 J. Phys. A: Math. Gen. 19 3849
[3] Pegg D T and Barnett S M 1989 Phys. Rev. A 39 1665
[4] Lynch R 1987 Opt. Soc. Am. B 4 1723
[5] Nath R and Kumar P 1991 Mod. Opt. 38 263
[6] Hsi-Teh Tu and Gong C D 1993 Mod. Opt. 40 57
[7] Bennett C H 1992 Phys. Rev. Lett. 69 2881
[8] Barenco A and Ekert A K 1995 J. Mod. Opt. 42 1253
[9] Gottesman D and Chuang I L 1999 Nature 402 390
[10] Nilsen M A and Chuang I L 2000 Quantum Computation and Auantum Information (Cambridge: Cambridge University)
[11] Bennett C H, Brassard G and Crepeau C 1993 Phys. Rev. Lett. 70 1895
[12] Mattle K and Weinfurter H 1996 Phys. Rev. Lett. 76 4656
[13] Bennett C H, Brassard G and Mermin N D 1992 Phys. Rev. Lett. 68 557
[14] Giovannetti V, Lioyd S and Macconel 2002 Phys. Rev. A 65 22309
[15] Loudon R and Knight P L 1987 J. Mod. Opt. 34 709
[16] Wall D F 1983 Nature 306 141
[17] Zhou L and Kuang L 2002 Phys. Lett. A 302 273
[18] Fu H C, Wang X G and Solomon A I 2001 Phys. Lett. A 291 73
[19] Mann A, Sanders B C and Munro W J 1995 Phys. Rev. A 51 989
[20] Wang X G 2002 J. Phys. A 35 165
[21] Peng J S and Li G X 1996 Introduction to Modern Quantum Optics (Beijing: Science Press)[1] Loudon R 1973 The Quantum Theory of Light (Oxford: Oxford University)
[2] Barnett S M and Pegg D T 1986 J. Phys. A: Math. Gen. 19 3849
[3] Pegg D T and Barnett S M 1989 Phys. Rev. A 39 1665
[4] Lynch R 1987 Opt. Soc. Am. B 4 1723
[5] Nath R and Kumar P 1991 Mod. Opt. 38 263
[6] Hsi-Teh Tu and Gong C D 1993 Mod. Opt. 40 57
[7] Bennett C H 1992 Phys. Rev. Lett. 69 2881
[8] Barenco A and Ekert A K 1995 J. Mod. Opt. 42 1253
[9] Gottesman D and Chuang I L 1999 Nature 402 390
[10] Nilsen M A and Chuang I L 2000 Quantum Computation and Auantum Information (Cambridge: Cambridge University)
[11] Bennett C H, Brassard G and Crepeau C 1993 Phys. Rev. Lett.