Optical Properties of Atomic Defects in Hexagonal Boron Nitride Flakes under High Pressure
Xiao-Yu Zhao1,2 , Jun-Hui Huang1,2 , Zhi-Yao Zhuo1,2 , Yong-Zhou Xue1 , Kun Ding1 , Xiu-Ming Dou1,2** , Jian Liu1,2 , Bao-Quan Sun1,2
1 State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 1000832 College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049
Abstract :We investigate the pressure spectral characteristics and the effective tuning of defect emissions in hexagonal boron nitride (hBN) at low temperatures using a diamond anvil cell (DAC). It is found that the redshift rate of emission energy is up to 10 meV/GPa, demonstrating a controllable tuning of single photon emitters through pressure. Based on the distribution character of pressure coefficients as a function of wavelength, different kinds of atomic defect states should be responsible for the observed defect emissions.
收稿日期: 2019-11-27
出版日期: 2020-03-24
:
42.50.Dv
(Quantum state engineering and measurements)
61.72.-y
(Defects and impurities in crystals; microstructure)
62.50.-p
(High-pressure effects in solids and liquids)
78.67.-n
(Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)
引用本文:
. [J]. 中国物理快报, 2020, 37(4): 44204-.
Xiao-Yu Zhao, Jun-Hui Huang, Zhi-Yao Zhuo, Yong-Zhou Xue, Kun Ding, Xiu-Ming Dou, Jian Liu, Bao-Quan Sun. Optical Properties of Atomic Defects in Hexagonal Boron Nitride Flakes under High Pressure. Chin. Phys. Lett., 2020, 37(4): 44204-.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/37/4/044204
或
https://cpl.iphy.ac.cn/CN/Y2020/V37/I4/44204
[1] Tran T T, Bray K, Ford M J, Toth M and Aharonovich I 2016 Nat. Nanotechnol. 11 37 [2] Tran T T, Elbadawi C, Totonjian D, Lobo C J, Grosso G, Moon H, Englund D R, Ford M J, Aharonovich I and Toth M 2016 ACS Nano 10 7331 [3] Jungwirth N R, Calderon B, Ji Y, Spencer M G, Flatté M E and Fuchs G D 2016 Nano Lett. 16 6052 [4] Bourrellier R, Meuret S, Tararan A, Stéphan O, Kociak M, Tizei L H G and Zobelli A 2016 Nano Lett. 16 4317 [5] Kianinia M, Regan B, Tawfik S A, Tran T T, Ford M J, Aharonovich I and Toth M 2017 ACS Photon. 4 768 [6] Konthasinghe K, Chakraborty C, Mathur N, Qiu L, Mukherjee A, Fuchs G D and Vamivakas A N 2019 Optica 6 542 [7] Gottscholl A, Kianinia M, Soltamov V, Bradac C, Kasper C, Krambrock K, Sperlich A, Toth M, Aharonovich I and Dyakonov V 2019 arXiv:1906.03774v1 [8] Jelezko F and Wrachtrup J 2006 Phys. Status Solidi 203 3207 [9] Tran T T, Wang D, Xu Z Q, Yang A, Toth M, Odom T W and Aharonovich I 2017 Nano Lett. 17 2634 [10] Nguyen M, Kim S, Tran T T, Xu Z Q, Kianinia M, Toth M and Aharonovich I 2018 Nanoscale 10 2267 [11] Li X, Scully R A, Shayan K, Luo Y and Strauf S 2019 ACS Nano 13 6992 [12] Ziegler J, Klaiss R, Blaikie A, Miller D, Horowitz V R and Alemán B J 2019 Nano Lett. 19 2121 [13] Abidi I H, Mendelson N, Tran T T, Tyagi A, Zhuang M, Weng L T, Özyilmaz B, Aharonovich I, Toth M and Luo Z 2019 Adv. Opt. Mater. 7 1900397 [14] Proscia N V, Shotan Z, Jayakumar H, Reddy P, Cohen C, Dollar M, Alkauskas A, Doherty M, Meriles C A and Menon V M 2018 Optica 5 1128 [15] Grosso G, Moon H, Lienhard B, Ali S, Efetov D K, Furchi M M, Jarillo-Herrero P, Frod M J, Aharonovich I and Englund D 2017 Nat. Commun. 8 705 [16] Xue Y, Wang H, Tan Q, Zhang J, Yu T, Ding K, Jiang D, Dou X, Shi J and Sun B 2018 ACS Nano 12 7127 [17] Shotan Z, Jayakumar H, Considine C R, Mackoit M, Fedder H, Wrachtrup J, Alkauskas A, Doherty M W, Menon V M and Meriles C A 2016 ACS Photon. 3 2490 [18] Noh G, Choi D, Kim J H, Im D G, Kim Y H, Seo H and Lee J 2018 Nano Lett. 18 4710 [19] Tawfik S A, Ali S, Fronzi M, Kianinia M, Tran T T, Stampfl C, Aharonovich I, Toth M and Ford M J 2017 Nanoscale 9 13575 [20] Korona T and Chojecki M 2019 Int. J. Quantum Chem. 119 e25925 [21] Wigger D, Schmidt R, Del Pozo-Zamudio O, Preuß J A, Tonndorf P, Schneider R, Steeger P, Kern J, Khodaei Y, Sperling J, Michaelis de Vasconcellos S, Bratschitsch R and Kuhn T 2019 2D Mater. 6 035006 [22] Gauthier M, Polian A, Besson J M and Chevy A 1989 Phys. Rev. B 40 3837 [23] Wu X, Dou X, Ding K, Zhou P, Ni H, Niu Z, Jiang D and Sun B 2013 Appl. Phys. Lett. 103 252108 [24] Ye Y, Dou X, Ding K, Chen Y, Jiang D, Yang F and Sun B 2017 Phys. Rev. B 95 245313 [25] Jungwirth N R and Fuchs G D 2017 Phys. Rev. Lett. 119 057401 [26] Schell A W, Svedendahl M and Quidant R 2018 Adv. Mater. 30 1704237
[1]
. [J]. 中国物理快报, 2022, 39(8): 80301-.
[2]
. [J]. 中国物理快报, 2022, 39(5): 50301-.
[3]
. [J]. 中国物理快报, 2022, 39(3): 30302-030302.
[4]
. [J]. 中国物理快报, 2021, 38(9): 94203-.
[5]
. [J]. 中国物理快报, 2021, 38(8): 84201-.
[6]
. [J]. 中国物理快报, 2021, 38(4): 44201-.
[7]
. [J]. 中国物理快报, 2020, 37(7): 70301-.
[8]
. [J]. 中国物理快报, 2020, 37(5): 50303-.
[9]
. [J]. 中国物理快报, 2020, 37(4): 44209-044209.
[10]
. [J]. 中国物理快报, 2020, 37(2): 20302-.
[11]
. [J]. 中国物理快报, 2019, 36(10): 104203-.
[12]
. [J]. 中国物理快报, 2019, 36(9): 90301-.
[13]
. [J]. 中国物理快报, 2019, 36(7): 70302-.
[14]
. [J]. 中国物理快报, 2018, 35(9): 90303-.
[15]
. [J]. 中国物理快报, 2018, 35(7): 70302-.