High-Power Single-Spatial-Mode GaSb Tapered Laser around 2.0μm with Very Small Lateral Beam Divergence
Shu-Shan Huang1,2,3 , Yu Zhang1,2,3 , Yong-Ping Liao1,2,3 , Cheng-Ao Yang1,2,3 , Xiao-Li Chai1,2,3 , Ying-Qiang Xu1,2,3 , Hai-Qiao Ni1,2,3 , Zhi-Chuan Niu1,2,3**
1 State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 1000832 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 1000493 Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026
Abstract :We report high-power single-spatial-mode type-I GaSb-based tapered lasers fabricated on the InGaSb/AlGaAsSb material system. A straight ridge and three different tapered waveguide structures with varying flare angles are fabricated to optimize the output power and spatial-mode performance. The best devices exhibit single-spatial-mode operation with room-temperature output power up to 350 mW in continuous-wave mode at an emission wavelength around 2.0 μm with a very small far-field lateral divergence angle, which is beyond state of the art in terms of single-spatial-mode output power.
收稿日期: 2017-01-22
出版日期: 2017-07-22
引用本文:
. [J]. 中国物理快报, 2017, 34(8): 84202-.
Shu-Shan Huang, Yu Zhang, Yong-Ping Liao, Cheng-Ao Yang, Xiao-Li Chai, Ying-Qiang Xu, Hai-Qiao Ni, Zhi-Chuan Niu. High-Power Single-Spatial-Mode GaSb Tapered Laser around 2.0μm with Very Small Lateral Beam Divergence. Chin. Phys. Lett., 2017, 34(8): 84202-.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/34/8/084202
或
https://cpl.iphy.ac.cn/CN/Y2017/V34/I8/84202
[1] Scholle K, Lamrini S, Koopmann P and Fuhrberg P 2010 Frontiers in Guided Wave Optics and Optoelectronics (Rijeka: INTECH) chap 21 p 471 [2] Bochkarev A É Dolginov L M, Drakin A E E, Eliseev P G and Sverdlov B N 1988 Quantum Electron. 18 1362 [3] Baranov A N, Fouillant C, Grunberg P, Lazzari J L, Gaillard S and Joullie A 1994 Appl. Phys. Lett. 65 616 [4] Budni P A, Ibach C R, Setzler S D, Gustafson E J, Castro R T and Chicklis E P 2003 Opt. Lett. 28 1016 [5] Zhang Y G, Li A Z, Zheng Y L, Lin C and Jian G Z 2001 J. Cryst. Growth 227 582 [6] Rattunde M, Mermelstein C, Simanowski S, Schmitz J, Kiefer R, Herres N, Fuchs F, Walther M and Wagner J 2000 IEEE Int. Symp. Compound Semicond. (Monterey California, 2–5 October 2000) [7] Zhang Y G, Zheng Y L, Lin C, Li A Z and Liu S 2006 Chin. Phys. Lett. 23 2262 [8] Vizbaras A, Dvinelis E, Trinkūnas A, Šimonytė I, Greibus M, Kaušylas M, Žukauskas T, Songaila R and Vizbaras K 2014 Proc. SPIE 9081 90810 [9] Bach T, Herrmann T R W, Haecker A, Michel M S and Gross A 2009 BJU Int. 104 361 [10] Orii K, Nakahara A, Takase Y, Ozaki A, Sakita T and Iwasaki Y 1981 Surgery 90 120 [11] Swint R B, Yeoh T S, Elarde V C, Zediker M S and Coleman J J 2003 Proc. SPIE 4973 10 [12] Dente G C 2001 IEEE J. Quantum Electron. 37 1650 [13] Vizbaras A, Dvinelis E, Greibus M, Trinkūnas A, Kovalenkovas D, Šimonytė I and Vizbaras K 2013 Proc. SPIE 8993 899319 [14] Vizbaras K, Dvinelis E, Šimonytė I, Trinkūnas A, Greibus M, Songaila R, Žukauskas T, Kaušylas M and Vizbaras A 2015 Appl. Phys. Lett. 107 011103 [15] Liao Y P, Zhang Y, Xing J L, Wei S H, Hao H Y, Wang G W, Xu Y Q and Niu Z C 2015 J. Semicond. 36 054007 [16] Huber A E, Yeoh T S, Swint R B, Woo C Y and Lee K E 2001 IEEE Photon. Technol. Lett. 13 1064 [17] Sagawa M, Hiramoto K, Toyonaka T, Kikawa T, Fujisaki S and Uomi K 1997 IEEE J. Sel. Top. Quantum Electron. 3 666 [18] Crump P, Decker J, Winterfeldt M, Fricke J, Maaßdorf A, Erbert G and Tränkle G 2015 Proc. SPIE 9348 93480D [19] Paschke K, Sumpf B, Dittmar F, Erbert G, Staske R, Wenzel H and Tränkle G 2005 IEEE J. Sel. Top. Quantum Electron. 11 1223 [20] Paschke K, Bugge F, Blume G, Feise D and Erbert G 2015 Opt. Lett. 40 100 [21] Muller M, Bauer A, Lehnhardt T, Kamp M and Forchel A 2008 IEEE Photon. Technol. Lett. 20 2162–2164 [22] Xing J L, Zhang Y, Liao Y P, Wang J, Xiang W, Xu Y Q, Wang G W, Ren Z W and Niu Z C 2014 Chin. Phys. Lett. 31 054204 [23] Yang R Q, Hill C J, Yang B H, Wong C M, Muller R E and Echternach P M 2004 Appl. Phys. Lett. 84 3699 [24] Qiu B, Mcdougall S D, Liu X, Bacchin G and Marsh J H 2005 IEEE J. Quantum Electron. 41 1124 [25] Wang L J, Tong C Z, Tian S C, Shu S L, Zeng Y G, Rong J M, Wu H, Xing E B, Ning Y Q and Wang L J 2015 IEEE J. Sel. Top. Quantum Electron. 21 343 [26] Pietrzak A, Wenzel H, Erbert G and Tränkle G 2008 Opt. Lett. 33 2188 [27] Malag A, Dabrowska E, Teodorczyk M, Sobczak G, Kozlowska A and Kalbarczyk J 2012 IEEE J. Quantum Electron. 48 465 [28] Hung C T and Lu T C 2012 IEEE J. Quantum Electron. 49 127
[1]
. [J]. 中国物理快报, 2023, 40(1): 14201-.
[2]
. [J]. 中国物理快报, 0, (): 64201-.
[3]
. [J]. 中国物理快报, 2020, 37(6): 64201-.
[4]
. [J]. 中国物理快报, 2020, 37(5): 54203-.
[5]
. [J]. 中国物理快报, 2020, 37(4): 44206-.
[6]
. [J]. 中国物理快报, 2020, 37(4): 44207-.
[7]
. [J]. 中国物理快报, 2019, 36(10): 104201-.
[8]
. [J]. 中国物理快报, 2019, 36(8): 84201-.
[9]
. [J]. 中国物理快报, 2018, 35(4): 44202-.
[10]
. [J]. 中国物理快报, 2018, 35(3): 34202-.
[11]
. [J]. 中国物理快报, 2018, 35(2): 24202-.
[12]
. [J]. 中国物理快报, 2017, 34(9): 97801-.
[13]
. [J]. 中国物理快报, 2017, 34(7): 74202-.
[14]
. [J]. 中国物理快报, 2017, 34(7): 74205-.
[15]
. [J]. 中国物理快报, 2017, 34(7): 74211-.