High-Brightness Low-Divergence Tapered Lasers with a Narrow Taper Angle
Zhong-Hao Chen1,2,3 , Hong-Wei Qu1,2 , Xiao-Long Ma1,2,3 , Ai-Yi Qi1,2 , Xu-Yan Zhou1,2,3 , Yu-Fei Wang1,2 , Wan-Hua Zheng1,2,4**
1 State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 1000832 Laboratory of Solid State Optoelectronics Information Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 1000833 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 1000494 College of Future Technology, University of Chinese Academy of Sciences, Beijing 101408
Abstract :High-brightness tapered lasers with photonic crystal structures are designed and fabricated. A narrow taper angle is designed for the tapered section. The device delivers an output power of 3.3 W and a maximum wall-plug efficiency of 43%. The vertical beam divergence is around 11$^{\circ}$ at different currents. Nearly diffraction-limited beam qualities for the vertical and lateral directions are obtained. The lateral beam quality factor $M^{2}$ is below 2.5 and the vertical $M^{2}$ value is around 1.5 across the whole operating current range. The maximum brightness is 85 MW$\cdot$cm$^{-2}$sr$^{-1}$. When the current is above 3.3 A, the brightness is still above 80 MW$\cdot$cm$^{-2}$sr$^{-1}$.
收稿日期: 2019-03-20
出版日期: 2019-07-22
:
42.55.Px
(Semiconductor lasers; laser diodes)
42.60.Da
(Resonators, cavities, amplifiers, arrays, and rings)
42.60.Jf
(Beam characteristics: profile, intensity, and power; spatial pattern formation)
42.60.Pk
(Continuous operation)
引用本文:
. [J]. 中国物理快报, 2019, 36(8): 84201-.
Zhong-Hao Chen, Hong-Wei Qu, Xiao-Long Ma, Ai-Yi Qi, Xu-Yan Zhou, Yu-Fei Wang, Wan-Hua Zheng. High-Brightness Low-Divergence Tapered Lasers with a Narrow Taper Angle. Chin. Phys. Lett., 2019, 36(8): 84201-.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/36/8/084201
或
https://cpl.iphy.ac.cn/CN/Y2019/V36/I8/84201
[1] Chan H Y, Alam S, Xu L, Bateman J, Richardson D J and Shepherd D P 2014 Opt. Express 22 21938 [2] Fiebig C, Blume G, Uebernickel M, Feise D, Kaspari C, Paschke K, Fricke J, Wenzel H and Erbert G 2009 IEEE J. Sel. Top. Quantum Electron. 15 978 [3] Adamiec P, Sumpf B, Rüdiger I, Fricke J, Hasler K H, Ressel P, Wenzel H et al 2009 Opt. Lett. 34 2456 [4] Vilera M, Pérez-Serrano A, Tijero J M G and Esquivias I 2015 IEEE Photon. J. 7 1500709 [5] Sumpf B, Hasler K H, Adamiec P, Bugge F, Dittmar F, Fricke J, Wenzel H, Zorn M, Erbert G and Trankle G 2009 IEEE J. Sel. Top. Quantum Electron. 15 1009 [6] Wang X, Erbert G, Wenzel H, Eppich B, Crump P, Ginolas A, Fricke J, Bugge F, Spreemann M and Trankle G 2012 Semicond. Sci. Technol. 27 015010 [7] Kelemen M T, Weber J, Kaufel G, Bihlmann G, Moritz R, Mikulla M and Weimann G 2005 Electron. Lett. 41 1011 [8] Fiebig C, Blume G, Kaspari C, Feise D, Fricke J, Matalla M, John W, Wenzel H, Paschke K and Erbert G 2008 Electron. Lett. 44 1253 [9] Odriozola H, Tijero J M G, Borruel L, Esquivias I, Wenzel H, Dittmar F, Paschke K, Sumpf B and Erbert G 2009 IEEE J. Quantum Electron. 45 42 [10] Pagano R, Ziegler M, Tomm J W, Esquivias I, Tijero J M G, O'Callaghan J R, N Michel N, Krakowski M and Corbett B 2011 Appl. Phys. Lett. 98 221110 [11] Liu L, Qu H W, Wang Y F, Liu Y, Zhang Y J and Zheng W H 2014 Opt. Lett. 39 3231 [12] Heinrich A, Hagen C, Harlander M and Nussbaumer B 2014 Proc. SPIE 8965 89650W [13] Buda M, Hay J, Tan H H, Wong-Leung J and Jagadish C 2003 IEEE J. Quantum Electron. 39 625 [14] Pietrzak A, Wenzel H, Crump P, Bugge F, Fricke J, Spreemann M, Erbert G and Trankle G 2012 IEEE J. Quantum Electron. 48 568 [15] Crump P, Pietrzak A, Bugge F, Wenzel H, Erbert G and Trankle G 2010 Appl. Phys. Lett. 96 131110 [16] Smowton P M, Lewis G M, Yin M, Summers H D, Berry G and Button C C 1999 IEEE J. Sel. Top. Quantum Electron. 5 735 [17] Malag A, Dabrowska E, Teodorczyk M, Sobczak G et al 2012 IEEE J. Quantum Electron. 48 465 [18] Liu Y, Qu H W, Zhao S Y, Zhou X Y, Wang Y F and Zheng W H 2017 Semicond. Sci. Technol. 32 01LT01 [19] Liu L, Qu H W, Liu Y, Wang Y F, Qi A Y, Guo X J, Zhao P C, Zhang Y J and Zheng W H 2015 IEEE J. Sel. Top. Quantum Electron. 21 1900107 [20] Miah M J, Kettler T, Posilovic K, Kalosha P, Skoczowsky D, Rosales R, Bimberg D, Pohl J and Weyers M 2014 Appl. Phys. Lett. 105 151105 [21] Miah M J, Kalosha V P, Bimberg D, Pohl J and Weyers M 2016 Opt. Express 24 30514 [22] Zhao S Y, Wang Y F, Qu H W, Liu Y, Zhou X Y, Liu A J and Zheng W H 2017 IEEE Photon. Technol. Lett. 29 2005 [23] Ma X L, Liu A J, Qu H W, Liu Y, Zhao P C, Guo X J and Zheng W H 2016 IEEE Photon. Technol. Lett. 28 2403
[1]
. [J]. 中国物理快报, 2023, 40(1): 14201-.
[2]
. [J]. 中国物理快报, 0, (): 64201-.
[3]
. [J]. 中国物理快报, 2020, 37(6): 64201-.
[4]
. [J]. 中国物理快报, 2020, 37(5): 54203-.
[5]
. [J]. 中国物理快报, 2020, 37(4): 44206-.
[6]
. [J]. 中国物理快报, 2020, 37(4): 44207-.
[7]
. [J]. 中国物理快报, 2019, 36(10): 104201-.
[8]
. [J]. 中国物理快报, 2018, 35(4): 44202-.
[9]
. [J]. 中国物理快报, 2018, 35(3): 34202-.
[10]
. [J]. 中国物理快报, 2018, 35(2): 24202-.
[11]
. [J]. 中国物理快报, 2017, 34(9): 97801-.
[12]
. [J]. 中国物理快报, 2017, 34(8): 84202-.
[13]
. [J]. 中国物理快报, 2017, 34(7): 74202-.
[14]
. [J]. 中国物理快报, 2017, 34(7): 74205-.
[15]
. [J]. 中国物理快报, 2017, 34(7): 74211-.